Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • College of Computer, Mathematical & Natural Sciences
    • Computer Science
    • Technical Reports of the Computer Science Department
    • View Item
    •   DRUM
    • College of Computer, Mathematical & Natural Sciences
    • Computer Science
    • Technical Reports of the Computer Science Department
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Estimating the Selectivity of Spatial Queries Using the `Correlation' Fractal Dimension

    Thumbnail
    View/Open
    CS-TR-3423.ps (1.277Mb)
    No. of downloads: 275

    Auto-generated copy of CS-TR-3423.ps (507.4Kb)
    No. of downloads: 745

    Date
    1998-10-15
    Author
    Belussi, Alberto
    Faloutsos, Christos
    Metadata
    Show full item record
    Abstract
    We examine the estimation of selectivities for range and spatial join queries in real spatial databases. As we have shown earlier, real point sets: (a) violate consistently the "uniformity" and "independence" assumptions, (b) can often be described as "fractals", with non-integer (fractal) dimension. In this paper we show that, among the infinite family of fractal dimensions, the so called "Correlation Dimension" D2 is the one that we need to predict the selectivity of spatial join. The main contribution is that, for all the real and synthetic point-sets we tried, the average number of neighbors for a given point of the point-set follows a power law, with D2 as the exponent. This immediately solves the selectivity estimation for spatial joins, as well as for "biased" range queries (i.e., queries whose centers prefer areas of high point density). We present the formulas to estimate the selectivity for the biased queries, including an integration constant (Kshape) for each query shape. Finally, we show results on real and synthetic point sets, where our formulas achieve very low relative errors (typically about 10%, versus 40%-100% of the uniform assumption).
    URI
    http://hdl.handle.net/1903/425
    Collections
    • Technical Reports of the Computer Science Department

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility