Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • College of Computer, Mathematical & Natural Sciences
    • Computer Science
    • Technical Reports of the Computer Science Department
    • View Item
    •   DRUM
    • College of Computer, Mathematical & Natural Sciences
    • Computer Science
    • Technical Reports of the Computer Science Department
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Evaluation of Pattern Classifiers for Fingerprint and OCR Applications

    Thumbnail
    View/Open
    CS-TR-3162.ps (25.13Mb)
    No. of downloads: 390

    Auto-generated copy of CS-TR-3162.ps (598.1Kb)
    No. of downloads: 2061

    Date
    1998-10-15
    Author
    Blue, J.L.
    Candela, G.T.
    Grother, P.J.
    Chellappa, Rama
    Wilson, C.L.
    Metadata
    Show full item record
    Abstract
    (Also cross-referenced as CAR-TR-691) In this paper we evaluate the classification accuracy of four statistical and three neural network classifiers for two image based pattern classification problems. These are fingerprint classification and optical character recognition (OCR) for isolated handprinted digits. The evaluation results reported here should be useful for designers of practical systems for these two important commercial applications. For the OCR problem, the Karhunen-Loeve (K-L) transform of the images is used to generate the inp ut feature set. Similarly for the fingerprint problem, the K-L transform of the ridge directions is used to generate the input feature set. The statistical classifiers used were Euclidean minimum distance, quadratic minimum distance, normal, and knearest neighbor. The neural network classifiers used were multilayer perceptron, radial basis function, and probabilistic. The OCR data consisted of 7,480 digit images for training and 23,140 digit images for testing. The fingerprint data consisted of 9,000 trai ning and 2,000 testing images. In addition to evaluation for accuracy, the multilayer perceptron and radial basis function networks were evaluated for size and generalization capability. For the evaluated datasets the best accuracy obtained for either pro blem was provided by the probabilistic neural network, where the minimum classification error was 2.5% for OCR and 7.2% for fingerprints.
    URI
    http://hdl.handle.net/1903/396
    Collections
    • Technical Reports of the Computer Science Department

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility