Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • College of Computer, Mathematical & Natural Sciences
    • Computer Science
    • Technical Reports of the Computer Science Department
    • View Item
    •   DRUM
    • College of Computer, Mathematical & Natural Sciences
    • Computer Science
    • Technical Reports of the Computer Science Department
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Boundary Element Solution of Electromagnetic Fields for Non-Perfect Conductors at Low Frequencies and Thin Skin Depths

    Thumbnail
    View/Open
    UMIACS-TR-2020-01.pdf (1.565Mb)
    No. of downloads: 133

    Date
    2020-05-13
    Author
    Gumerov, Nail A.
    Adelman, Ross N.
    Duraiswami, Ramani
    DRUM DOI
    https://doi.org/10.13016/neua-qahd
    Metadata
    Show full item record
    Abstract
    A novel boundary element formulation for solving problems involving eddy currents in the thin skin depth approximation is developed. It is assumed that the time-harmonic magnetic field outside the scatterers can be described using the quasistatic approximation. A two-term asymptotic expansion with respect to a small parameter characterizing the skin depth is derived for the magnetic and electric fields outside and inside the scatterer, which can be extended to higher order terms if needed. The introduction of a special surface operator (the inverse surface gradient) allows the reduction of the problem complexity. A method to compute this operator is developed. The obtained formulation operates only with scalar quantities and requires computation of surface operators that are usual for boundary element (method of moments) solutions to the Laplace equation. The formulation can be accelerated using the fast multipole method. The method is much faster than solving the vector Maxwell equations. The obtained solutions are compared with the Mie solution for scattering from a sphere and the error of the solution is studied. Computations for much more complex shapes of different topologies, including for magnetic and electric field cages used in testing are also performed and discussed.
    URI
    http://hdl.handle.net/1903/26002
    Collections
    • Technical Reports of the Computer Science Department

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility