Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • College of Computer, Mathematical & Natural Sciences
    • Computer Science
    • Technical Reports from UMIACS
    • View Item
    •   DRUM
    • College of Computer, Mathematical & Natural Sciences
    • Computer Science
    • Technical Reports from UMIACS
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Studying Directory Access Patterns via Reuse Distance Analysis and Evaluating Their Impact on Multi-Level Directory Caches

    Thumbnail
    View/Open
    UMIACS-TR-2014-01.pdf (452.7Kb)
    No. of downloads: 457

    Date
    2014-01-13
    Author
    Zhao, Minshu
    Yeung, Donald
    Metadata
    Show full item record
    Abstract
    The trend for multicore CPUs is towards increasing core count. One of the key limiters to scaling will be the on-chip directory cache. Our work investigates moving portions of the directory away from the cores, perhaps to off-chip DRAM, where ample capacity exists. While such multi-level directory caches exhibit increased latency, several aspects of directory accesses will shield CPU performance from the slower directory, including low access frequency and latency hiding underneath data accesses to main memory. While multi-level directory caches have been studied previously, no work has of yet comprehensively quantified the directory access patterns themselves, making it difficult to understand multi-level behavior in depth. This paper presents a framework based on multicore reuse distance for studying directory cache access patterns. Using our analysis framework, we show between 69-93% of directory entries are looked up only once or twice during their liftimes in the directory cache, and between 51-71% of dynamic directory accesses are latency tolerant. Using cache simulations, we show a very small L1 directory cache can service 80% of latency critical directory lookups. Although a significant number of directory lookups and eviction notifications must access the slower L2 directory cache, virtually all of these are latency tolerant.
    URI
    http://hdl.handle.net/1903/14972
    Collections
    • Technical Reports from UMIACS

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility