Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • College of Computer, Mathematical & Natural Sciences
    • Computer Science
    • Technical Reports from UMIACS
    • View Item
    •   DRUM
    • College of Computer, Mathematical & Natural Sciences
    • Computer Science
    • Technical Reports from UMIACS
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Visibility Planning: Predicting Continuous Period of Unobstructed Views

    Thumbnail
    View/Open
    CS-TR-4577.ps (456.5Kb)
    No. of downloads: 248

    Auto-generated copy of CS-TR-4577.ps (170.5Kb)
    No. of downloads: 691

    Date
    2004-04-19
    Author
    Lim, Ser-Nam
    Davis, Larry S.
    Wan, Yung-Chun (Justin)
    Metadata
    Show full item record
    Abstract
    To perform surveillance tasks effectively, unobstructed views of objects are required e.g. unobstructed video of objects are often needed for gait recognition. As a result, we need to determine intervals for video collection during which a desired object is visible w.r.t. a given sensor. In addition, these intervals are in the future so that the system can effectively plan and schedule sensors for collecting these videos. We describe an approach to determine these visibility intervals. A Kalman filter is first used to predict the trajectories of the objects. The trajectories are converted to polar coordinate representations w.r.t. a given sensor. Trajectories with the same angular displacement w.r.t. the sensor over time can be found by determining intersection points of functions representing these trajectories. Intervals between these intersection points are suitable for video collection. We also address the efficiency issue of finding these intersection points. An obvious brute force approach of $O(N^2)$ exists, where $N$ is the number of objects. This approach suffices when $N$ is small. When $N$ is large, we introduce an optimal segment intersection algorithm of $O(N\log^2N+I)$, $I$ being the number of intersection points. Finally, we model the prediction errors associated with the Kalman filter using a circular object representation. Experimental results that compare the performance of the brute force and the optimal segment intersection algorithms are shown. (UMIACS-TR-2004-22)
    URI
    http://hdl.handle.net/1903/1349
    Collections
    • Technical Reports from UMIACS
    • Technical Reports of the Computer Science Department

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility