Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • College of Computer, Mathematical & Natural Sciences
    • Computer Science
    • Technical Reports from UMIACS
    • View Item
    •   DRUM
    • College of Computer, Mathematical & Natural Sciences
    • Computer Science
    • Technical Reports from UMIACS
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Comparative Study of Spatial Indexing Techniques for Multidimensional Scientific Datasets

    Thumbnail
    View/Open
    CS-TR-4556.ps (449.1Kb)
    No. of downloads: 330

    Auto-generated copy of CS-TR-4556.ps (173.4Kb)
    No. of downloads: 1212

    Date
    2004-01-29
    Author
    Nam, Beomseok
    Sussman, Alan
    Metadata
    Show full item record
    Abstract
    Scientific applications that query into very large multidimensional datasets are becoming more common. These datasets are growing in size every day, and are becoming truly enormous, making it infeasible to index individual data elements. We have instead been experimenting with {\em chunking} the datasets to index them, grouping data elements into small chunks of a fixed, but dataset-specific, size to take advantage of spatial locality. While spatial indexing structures based on R-trees perform reasonably well for the rectangular bounding boxes of such chunked datasets, other indexing structures based on KDB-trees, such as Hybrid trees, have been shown to perform very well for point data. In this paper, we investigate how all these indexing structures perform for multidimensional scientific datasets, and compare their features and performance with that of {\bf SH-trees}, an extension of Hybrid trees, for indexing multidimensional rectangles. Our experimental results show that the algorithms for building and searching SH-trees outperform those for R-trees, R*-trees, and X-trees for both real application and synthetic datasets and queries. We show that the SH-tree algorithms perform well for both low and high dimensional data, and that they scale well to high dimensions both for building and searching the trees. (UMIACS-TR-2004-03)
    URI
    http://hdl.handle.net/1903/1335
    Collections
    • Technical Reports from UMIACS
    • Technical Reports of the Computer Science Department

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility