Show simple item record

Building an Old-Fashioned Sparse Solver

dc.contributor.authorStewart, G. W.en_US
dc.description.abstractA sparse matrix is a matrix with very few nonzero elements. Many applications in diverse fields give rise to linear systems of the form $Ax = b$, where $A$ is sparse. The problem in solving these systems is to take advantage of the preponderance of zero elements to reduce both memory use and comutation time. The purpose of this paper is to introduce students (and perhaps their teachers) to sparse matrix technology. It is impossible to treat all the techniques developed since the subject started in the 1960's. Instead, this paper constructs a sparse solver for positive definite systems that would have been state of the art around 1980, emphasizing equally theory and computational practice. It is hoped that a mastery of this material will allow the reader to study the subject independently. (UMIACS-TR-2003-95)en_US
dc.format.extent423621 bytes
dc.relation.ispartofseriesUM Computer Science Department; CS-TR-4527en_US
dc.relation.ispartofseriesUMIACS; UMIACS-TR-2003-95en_US
dc.titleBuilding an Old-Fashioned Sparse Solveren_US
dc.typeTechnical Reporten_US
dc.relation.isAvailableAtDigital Repository at the University of Marylanden_US
dc.relation.isAvailableAtUniversity of Maryland (College Park, Md.)en_US
dc.relation.isAvailableAtTech Reports in Computer Science and Engineeringen_US
dc.relation.isAvailableAtUMIACS Technical Reportsen_US

Files in this item


This item appears in the following Collection(s)

Show simple item record