Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • College of Computer, Mathematical & Natural Sciences
    • Computer Science
    • Technical Reports of the Computer Science Department
    • View Item
    •   DRUM
    • College of Computer, Mathematical & Natural Sciences
    • Computer Science
    • Technical Reports of the Computer Science Department
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Evaluating Dynamic Software Update Safety Using Systematic Testing

    Thumbnail
    View/Open
    CS-TR-4993-update-1.pdf (357.3Kb)
    No. of downloads: 1163

    Date
    2011-09-22
    Author
    Hayden, Christopher M.
    Smith, Edward K.
    Hardisty, Eric A.
    Hicks, Michael
    Foster, Jeffrey S.
    Metadata
    Show full item record
    Abstract
    Dynamic software updating (DSU) systems patch programs on the fly without incurring downtime. To avoid failures due to the updating process itself, many DSU systems employ timing restrictions. However, timing restrictions are theoretically imperfect, and their practical effectiveness is an open question. This paper presents the first significant empirical evaluation of three popular timing restrictions: activeness safety (AS), which prevents updates to active functions; confreeness safety (CFS), which only allows modifications to active functions when doing so is provably type-safe; and manual identification of the event-handling loops during which an update may occur. We evaluated these timing restrictions using a series of DSU patches to three programs: OpenSSH, vsftpd, and ngIRCd.We systematically applied updates at each distinct update point reached during execution of a suite of system tests for these programs to determine which updates pass and which fail. We found that all three timing restrictions prevented most failures, but only manual identification allowed none. Further, although CFS and AS allowed many more update points, manual identification still supported updates with minimal delay. Finally, we found that manual identification required the least developer effort. Overall, we conclude that manual identification is most effective.
    URI
    http://hdl.handle.net/1903/12146
    Collections
    • Technical Reports of the Computer Science Department

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility