Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • College of Computer, Mathematical & Natural Sciences
    • Computer Science
    • Technical Reports from UMIACS
    • View Item
    •   DRUM
    • College of Computer, Mathematical & Natural Sciences
    • Computer Science
    • Technical Reports from UMIACS
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Security Infrastructure for Mobile Transactional Systems

    Thumbnail
    View/Open
    CS-TR-4171.ps (1.419Mb)
    No. of downloads: 235

    Auto-generated copy of CS-TR-4171.ps (201.4Kb)
    No. of downloads: 780

    Date
    2000-08-16
    Author
    Cetintemel, Ugur
    Keleher, Peter J.
    Bhattacharjee, Bobby
    Metadata
    Show full item record
    Abstract
    In this paper, we present an infrastructure for providing secure transactional replication support for peer-to-peer, decentralized databases. We first describe how to effectively provide protection against external threats, malicious actions by servers not authorized to access data, using conventional cryp-tography-based mechanisms. We then classify and present algorithms that provide protection against internal threats, malicious actions by authenticated servers that misrepresent protocol-specific infor-mation. Our approach to handling internal threats uses both cryptographic techniques and modifica-tions to the update commit criteria. The techniques we propose are unique in that they not only enable a tradeoff between performance and the degree of tolerance to malicious servers, but also allow for indi-vidual servers to support non-uniform degrees of tolerance without adversely affecting the performance of the rest of the system. We investigate the cost of our security mechanisms in the context of Deno: a prototype object replica-tion system designed for use in mobile and weakly-connected environments. Experimental results reveal that protecting against internal threats comes at a cost, but the marginal cost for protecting against larger cliques of malicious insiders is generally low. Furthermore, comparison with a decentralized Read-One Write-All protocol shows that our approach performs significantly better under various workloads. (Also cross-referenced as UMIACS-TR-2000-59)
    URI
    http://hdl.handle.net/1903/1096
    Collections
    • Technical Reports from UMIACS
    • Technical Reports of the Computer Science Department

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility