Global, Environmental, and Occupational Health

Permanent URI for this communityhttp://hdl.handle.net/1903/10067

Prior to May 2024, previously known as the Maryland Institute for Applied Environmental Health.

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Laboratory Chamber Evaluation of Flow Air Quality Sensor PM2.5 and PM10 Measurements
    (MDPI, 2022-06-15) Crnosija, Natalie; Zamora, Misti Levy; Rule, Ana M.; Payne-Sturges, Devon
    The emergence of low-cost air quality sensors as viable tools for the monitoring of air quality at population and individual levels necessitates the evaluation of these instruments. The Flow air quality tracker, a product of Plume Labs, is one such sensor. To evaluate these sensors, we assessed 34 of them in a controlled laboratory setting by exposing them to PM10 and PM2.5 and compared the response with Plantower A003 measurements. The overall coefficient of determination (R2) of measured PM2.5 was 0.76 and of PM10 it was 0.73, but the Flows’ accuracy improved after each introduction of incense. Overall, these findings suggest that the Flow can be a useful air quality monitoring tool in air pollution areas with higher concentrations, when incorporated into other monitoring frameworks and when used in aggregate. The broader environmental implications of this work are that it is possible for individuals and groups to monitor their individual exposure to particulate matter pollution.
  • Item
    AIR QUALITY ASSESSMENT OF RESIDENTIAL EXPOSURE TO PARTICULATE MATTER AND VOLATILE ORGANIC COMPOUNDS NEAR A CONCRETE BLOCK PLANT AND TRAFFIC IN BLADENSBURG, MARYLAND
    (2018) Ezeugoh, Rosemary Ifeoma; Wilson, Sacoby M; Maryland Institute for Applied Environmental Health; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Ambient air pollution from stationary sources, industrial traffic, and commuter traffic can negatively impact air quality and human health. Ernest Maier, a concrete block plant located in Bladensburg, Maryland wants to expand to include a concrete batching plant on the same property. This expansion could further degrade air quality and impact the health of vulnerable residents. Air quality monitoring were conducted in the community at five personal sites using the Airbeam and Atmotube, which are wearable, real-time sensors that can measure PM2.5 and VOCs respectively. Sampling and traffic counts were conducted in thirty minutes’ periods to capture morning on-peak, afternoon off-peak and evening on-peak periods. Pearson’s correlation revealed that a weak correlation among the PM2.5 and VOC concentrations observed between the different sites and some of the values were found to be statistically significant. ANOVA analysis showed that the PM2.5 levels were significantly different at the different sites (p-value 0.001).