School of Public Health

Permanent URI for this communityhttp://hdl.handle.net/1903/1633

The collections in this community comprise faculty research works, as well as graduate theses and dissertations.

Note: Prior to July 1, 2007, the School of Public Health was named the College of Health & Human Performance.

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    INFLAMMATORY MACROPHAGE REGULATION OF ANGIOGENESIS AND SKELETAL MUSCLE PHENOTYPES
    (2023) Evans, William Stuart; Prior, Steven J; Kinesiology; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Chronic inflammation is a hallmark of cardiovascular disease; however, there is a lack of understanding of how systemic inflammation affects the peripheral skeletal muscle to potentially hasten frailty and functional declines in patients. The overarching objective of this dissertation was to determine whether this systemic inflammation is accompanied by macrophage infiltration of skeletal muscle and reductions in skeletal muscle capillarization and fiber size. Using animal models of a) heart failure (HF) induced by transverse aortic constriction (TAC), and b) skeletal muscle ischemia, this work illuminates changes that occur in skeletal muscle with cardiovascular disease-related inflammation. The first study demonstrated that pressure overload resulted in cardiac hypertrophy in male rats consistent with heart failure with preserved ejection fraction (HFpEF), while females did not show cardiac hypertrophy or HF. The second study demonstrated sex-specific differences in skeletal muscle, with TAC male rats exhibiting smaller fiber sizes and greater capillarization, and female TAC rats exhibiting lower capillarization than Sham counterparts. This study then investigated skeletal muscle macrophages to determine whether they might underly or contribute to these differences. There were fewer macrophages in the skeletal muscle of male TAC rats than male Sham rats, and macrophage conditioned medium from TAC rats produced less-developed capillary networks in an ex vivo, experimental assay. Finally, the third study investigated whether an acute bout of systemic inflammation, in the absence of HF, could alter the infiltration of macrophages, or skeletal muscle fiber size or capillarization. Hindlimb ischemia was used to induce acute, systemic inflammation that peaked after 1 day. This systemic inflammation increased the infiltration of macrophages into remote, non-ischemic skeletal muscle by day 7; however, muscle structure was preserved over this short time course. This dissertation demonstrates that cardiovascular disease-associated inflammation is linked with tissue-level changes in macrophages in a sex-specific manner. These changes accompany and may, over time, contribute to skeletal muscle fiber atrophy and changes in capillarization in cardiovascular disease patients.
  • Thumbnail Image
    Item
    The SH3 and cysteine-rich domain 3 (Stac3) gene is important to growth, fiber composition, and calcium release from the sarcoplasmic reticulum in postnatal skeletal muscle
    (Springer Nature, 2016-04-11) Cong, Xiaofei; Doering, Jonathan; Mazala, Davi A. G.; Chin, Eva R.; Grange, Robert W.; Jiang, Honglin
    The SH3 and cysteine-rich domain 3 (Stac3) gene is specifically expressed in the skeletal muscle. Stac3 knockout mice die perinatally. In this study, we determined the potential role of Stac3 in postnatal skeletal muscle growth, fiber composition, and contraction by generating conditional Stac3 knockout mice. We disrupted the Stac3 gene in 4-week-old male mice using the Flp-FRT and tamoxifen-inducible Cre-loxP systems. RT-qPCR and western blotting analyses of the limb muscles of target mice indicated that nearly all Stac3 mRNA and more than 70 % of STAC3 protein were deleted 4 weeks after tamoxifen injection. Postnatal Stac3 deletion inhibited body and limb muscle mass gains. Histological staining and gene expression analyses revealed that postnatal Stac3 deletion decreased the size of myofibers and increased the percentage of myofibers containing centralized nuclei, with no effect on the total myofiber number. Grip strength and grip time tests indicated that postnatal Stac3 deletion decreased limb muscle strength in mice. Muscle contractile tests revealed that postnatal Stac3 deletion reduced electrostimulation-induced but not the ryanodine receptor agonist caffeine-induced maximal force output in the limb muscles. Calcium imaging analysis of single flexor digitorum brevis myofibers indicated that postnatal Stac3 deletion reduced electrostimulation- but not caffeine-induced calcium release from the sarcoplasmic reticulum. This study demonstrates that STAC3 is important to myofiber hypertrophy, myofiber-type composition, contraction, and excitation-induced calcium release from the sarcoplasmic reticulum in the postnatal skeletal muscle.
  • Thumbnail Image
    Item
    Defects in sarcolemma repair and skeletal muscle function after injury in a mouse model of Niemann-Pick type A/B disease
    (Springer Nature, 2019-01-05) Michailowsky, V.; Li, H.; Mittra, B.; Iyer, S. R.; Mazála, D. A. G.; Corrotte, M.; Wang, Y.; Chin, E. R.; Lovering, R. M.; Andrews, N. W.
    Niemann-Pick disease type A (NPDA), a disease caused by mutations in acid sphingomyelinase (ASM), involves severe neurodegeneration and early death. Intracellular lipid accumulation and plasma membrane alterations are implicated in the pathology. ASM is also linked to the mechanism of plasma membrane repair, so we investigated the impact of ASM deficiency in skeletal muscle, a tissue that undergoes frequent cycles of injury and repair in vivo. Utilizing the NPDA/B mouse model ASM−/− and wild type (WT) littermates, we performed excitation-contraction coupling/Ca2+ mobilization and sarcolemma injury/repair assays with isolated flexor digitorum brevis fibers, proteomic analyses with quadriceps femoris, flexor digitorum brevis, and tibialis posterior muscle and in vivo tests of the contractile force (maximal isometric torque) of the quadriceps femoris muscle before and after eccentric contraction-induced muscle injury. ASM−/− flexor digitorum brevis fibers showed impaired excitation-contraction coupling compared to WT, a defect expressed as reduced tetanic [Ca2+]i in response to electrical stimulation and early failure in sustaining [Ca2+]i during repeated tetanic contractions. When injured mechanically by needle passage, ASM−/− flexor digitorum brevis fibers showed susceptibility to injury similar to WT, but a reduced ability to reseal the sarcolemma. Proteomic analyses revealed changes in a small group of skeletal muscle proteins as a consequence of ASM deficiency, with downregulation of calsequestrin occurring in the three different muscles analyzed. In vivo, the loss in maximal isometric torque of WT quadriceps femoris was similar immediately after and 2 min after injury. The loss in ASM−/− mice immediately after injury was similar to WT, but was markedly larger at 2 min after injury. Skeletal muscle fibers from ASM−/− mice have an impairment in intracellular Ca2+ handling that results in reduced Ca2+ mobilization and a more rapid decline in peak Ca2+ transients during repeated contraction-relaxation cycles. Isolated fibers show reduced ability to repair damage to the sarcolemma, and this is associated with an exaggerated deficit in force during recovery from an in vivo eccentric contraction-induced muscle injury. Our findings uncover the possibility that skeletal muscle functional defects may play a role in the pathology of NPDA/B disease.