School of Public Health

Permanent URI for this communityhttp://hdl.handle.net/1903/1633

The collections in this community comprise faculty research works, as well as graduate theses and dissertations.

Note: Prior to July 1, 2007, the School of Public Health was named the College of Health & Human Performance.

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    The role of ER stress in skeletal muscle atrophy in amyotrophic lateral sclerosis
    (2015) Chen, Dapeng; Chin, Eva R; Kinesiology; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Amyotrophic lateral sclerosis (ALS) is a devastating disease which affects both motor neurons and skeletal muscle. Skeletal muscle atrophy and weakness are two of the main features of ALS disease progression. We hypothesized that disruptions in the sarcoplasmic reticulum and endoplasmic reticulum (SR/ER) play an important role in skeletal muscle pathology in ALS. This dissertation is comprised of three studies investigating ER stress in skeletal muscle and its relationship to oxidative stress and SR Ca2+ regulation. Study#1 established that the ER stress markers PERK, IRE1α and Grp78/BiP as well as the ER-stress specific apoptotic marker CHOP are upregulated in skeletal muscle of ALS transgenic (ALS-Tg) mice and that these changes were greater in fast white vs. slow red muscles. Study #2 showed that skeletal muscle-specific overexpression of the SR Ca2+ ATPase SERCA1 improved motor function, delayed disease onset and attenuated the muscle atrophy in ALS-Tg mice but did not attenuate the ER stress markers. Study #3 investigated the potential molecular mechanisms of ER stress in skeletal muscle pathology in ALS. This final dissertation study showed that the Grp78/BiP protein interacts with SERCA1 and various mitochondrial proteins including ATP synthase subunits in skeletal muscle of ALS-Tg but not wild-type mice. Disruption of the Grp78/BiP-SERCA1 protein-protein interaction by antibody sequestration of Grp78/BiP decreased SERCA ATPase activity, suggesting that Grp78/BiP preserves SERCA function. In C2C12 myocytes, oxidative stress induced by H2O2 dramatically decreased SERCA ATPase activity and catalase, which removes H2O2, could recover SERCA ATPase activity. Inhibition of ER stress by 4-PBA partially rescued H2O2-induced decreases in SERCA ATPase activity suggesting that this mechanisms can mitigate oxidative stress-induced SERCA impairment. Collectively, these studies provided insight into the cellular mechanisms underlying skeletal muscle dysfunction in ALS and suggest a role for ER stress chaperone proteins in minimizing Ca2+ overload damage in skeletal muscle. These data further suggest that the ER stress pathway could be a novel therapeutic strategy to treat skeletal muscle dysfunction in ALS.
  • Thumbnail Image
    Item
    Alterations in human skeletal muscle proteins in amyotrophic lateral sclerosis
    (2015) DeRusso, Alicia Lauren; Chin, Eva; Kinesiology; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Amyotrophic lateral sclerosis (ALS) is the most common fatal neurodegenerative disease, resulting in loss of voluntary muscle control, atrophy, paralysis, and eventually death. Although the pathophysiology of ALS is not completely understood, recent research in Dr. Chin's lab has identified alterations in skeletal muscle proteins in ALS mice. The purpose of this study was to investigate alterations in proteins involved in calcium handling (SERCA1 and SERCA2), endoplasmic reticulum (ER) stress (Grp78/BiP, PDI, and CHOP) and protein synthesis (Akt) in human ALS skeletal muscle. The ER chaperone protein Grp78/BiP and Akt, a protein involved in protein synthesis, were higher in ALS compared to CON. The calcium pump SERCA1 was lower in diaphragm compared to quadriceps muscles of ALS cases. These data highlight alterations in skeletal muscle proteins not only between ALS and CON, but also between different muscles in ALS, which are helpful for informing future research study designs.