School of Public Health
Permanent URI for this communityhttp://hdl.handle.net/1903/1633
The collections in this community comprise faculty research works, as well as graduate theses and dissertations.
Note: Prior to July 1, 2007, the School of Public Health was named the College of Health & Human Performance.
Browse
2 results
Search Results
Item Effects of acute aerobic exercise on mnemonic discrimination performance in older adults(Cambridge University Press, 2022-08-15) Callow, Daniel D.; Pena, Gabriel S.; Stark, Craig E. L.; Smith, J. CarsonObjectives:Ample evidence suggests exercise is beneficial for hippocampal function. Furthermore, a single session of aerobic exercise provides immediate benefits to mnemonic discrimination performance, a highly hippocampal-specific memory process, in healthy younger adults. However, it is unknown if a single session of aerobic exercise alters mnemonic discrimination in older adults, who generally exhibit greater hippocampal deterioration and deficits in mnemonic discrimination performance. Methods: We conducted a within subject acute exercise study in 30 cognitively healthy and physically active older adults who underwent baseline testing and then completed two experimental visits in which they performed a mnemonic discrimination task before and after either 30 min of cycling exercise or 30 min of seated rest. Linear mixed-effects analyses were conducted in which condition order and age were controlled, time (pre vs. post) and condition (exercise vs. rest) were modeled as fixed effects, and subject as a random effect. Results: No significant time by condition interaction effect was found for object recognition (p = .254, η2 =.01), while a significant reduction in interference was found for mnemonic discrimination performance following the exercise condition (p = .012, η2 =.07). A post-intervention only analysis indicated that there was no difference between condition for object recognition (p = .186, η2 =.06), but that participants had better mnemonic discrimination performance (p < .001, η2 =.22) following the exercise. Conclusions: Our results suggest a single session of moderate-intensity aerobic exercise may reduce interference and elicit better mnemonic discrimination performance in healthy older adults, suggesting benefits for hippocampal-specific memory function.Item Hippocampal and Cerebral Blood Flow after Exercise Cessation in Master Athletes(Frontiers, 2016-08-05) Alfini, Alfonso J.; Weiss, Lauren R.; Leitner, Brooks P.; Smith, Theresa J.; Hagberg, James M.; Smith, J. CarsonWhile endurance exercise training improves cerebrovascular health and has neurotrophic effects within the hippocampus, the effects of stopping this exercise on the brain remain unclear. Our aim was to measure the effects of 10 days of detraining on resting cerebral bloodflow (rCBF) in gray matter and the hippocampus in healthy and physically fit older adults. We hypothesized that rCBF would decrease in the hippocampus after a 10-day cessation of exercise training. Twelve master athletes, defined as older adults (age ≥ 50 years) with long-term endurance training histories (≥ 15 years), were recruited from local running clubs. After screening, eligible participants were asked to cease all training and vigorous physical activity for 10 consecutive days. Before and immediately after the exercise cessation period, rCBF was measured with perfusion-weighted MRI. A voxel-wise analysis was used in gray matter, and the hippocampus was selected a priori as a structurally defined region of interest (ROI), to detect rCBF changes overtime. Resting CBF significantly decreased in eight gray matter brain regions. These regions included: (L) inferior temporal gyrus, fusiform gyrus, inferior parietal lobule, (R) cerebellar tonsil, lingual gyrus, precuneus, and bilateral cerebellum (FEW p < 0.05). Additionally, rCBF within the left and right hippocampus significantly decreased after 10 days of no exercise training. These findings suggest that the cerebrovascular system, including the regulation of resting hippocampal blood flow, is responsive to short-term decreases in exercise training among master athletes. Cessation of exercise training among physically fit individuals may provide a novel method to assess the effects of acute exercise and exercise training on brain function in older adults.