School of Public Health
Permanent URI for this communityhttp://hdl.handle.net/1903/1633
The collections in this community comprise faculty research works, as well as graduate theses and dissertations.
Note: Prior to July 1, 2007, the School of Public Health was named the College of Health & Human Performance.
Browse
2 results
Search Results
Item Using 164 Million Google Street View Images to Derive Built Environment Predictors of COVID-19 Cases(MDPI, 2020-09-01) Nguyen, Quynh C.; Huang, Yuru; Kumar, Abhinav; Duan, Haoshu; Keralis, Jessica M.; Dwivedi, Pallavi; Meng, Hsien-Wen; Brunisholz, Kimberly D.; Jay, Jonathan; Javanmardi, Mehran; Tasdizen, TolgaThe spread of COVID-19 is not evenly distributed. Neighborhood environments may structure risks and resources that produce COVID-19 disparities. Neighborhood built environments that allow greater flow of people into an area or impede social distancing practices may increase residents’ risk for contracting the virus. We leveraged Google Street View (GSV) images and computer vision to detect built environment features (presence of a crosswalk, non-single family home, single-lane roads, dilapidated building and visible wires). We utilized Poisson regression models to determine associations of built environment characteristics with COVID-19 cases. Indicators of mixed land use (non-single family home), walkability (sidewalks), and physical disorder (dilapidated buildings and visible wires) were connected with higher COVID-19 cases. Indicators of lower urban development (single lane roads and green streets) were connected with fewer COVID-19 cases. Percent black and percent with less than a high school education were associated with more COVID-19 cases. Our findings suggest that built environment characteristics can help characterize community-level COVID-19 risk. Sociodemographic disparities also highlight differential COVID-19 risk across groups of people. Computer vision and big data image sources make national studies of built environment effects on COVID-19 risk possible, to inform local area decision-making.Item Social Network Analysis on the Mobility of Three Vulnerable Population Subgroups: Domestic Workers, Flight Crews, and Sailors during the COVID-19 Pandemic in Hong Kong(MDPI, 2022-06-21) Yu, Weijun; Alipio, Cheryll; Wan, Jia'an; Mane, Heran; Nguyen, Quynh C.Background: Domestic workers, flight crews, and sailors are three vulnerable population subgroups who were required to travel due to occupational demand in Hong Kong during the COVID-19 pandemic. Objective: The aim of this study was to explore the social networks among three vulnerable population subgroups and capture temporal changes in their probability of being exposed to SARS-CoV-2 via mobility. Methods: We included 652 COVID-19 cases and utilized Exponential Random Graph Models to build six social networks: one for the cross-sectional cohort, and five for the temporal wave cohorts, respectively. Vertices were the three vulnerable population subgroups. Edges were shared scenarios where vertices were exposed to SARS-CoV-2. Results: The probability of being exposed to a COVID-19 case in Hong Kong among the three vulnerable population subgroups increased from 3.38% in early 2020 to 5.78% in early 2022. While domestic workers were less mobile intercontinentally compared to flight crews and sailors, domestic workers were 1.81-times in general more likely to be exposed to SARS-CoV-2. Conclusions: Vulnerable populations with similar ages and occupations, especially younger domestic workers and flight crew members, were more likely to be exposed to SARS-CoV-2. Social network analysis can be used to provide critical information on the health risks of infectious diseases to vulnerable populations.