School of Public Health

Permanent URI for this communityhttp://hdl.handle.net/1903/1633

The collections in this community comprise faculty research works, as well as graduate theses and dissertations.

Note: Prior to July 1, 2007, the School of Public Health was named the College of Health & Human Performance.

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    Google Street View-Derived Neighborhood Characteristics in California Associated with Coronary Heart Disease, Hypertension, Diabetes
    (MDPI, 2021-10-03) Nguyen, Thu T.; Nguyen, Quynh C.; Rubinsky, Anna D.; Tasdizen, Tolga; Deligani, Amir Hossein Nazem; Dwivedi, Pallavi; Whitaker, Ross; Fields, Jessica D.; DeRouen, Mindy C.; Mane, Heran; Lyles, Courtney R.; Brunisholz, Kim D.; Bibbins-Domingo, Kirsten
    Characteristics of the neighborhood built environment influence health and health behavior. Google Street View (GSV) images may facilitate measures of the neighborhood environment that are meaningful, practical, and adaptable to any geographic boundary. We used GSV images and computer vision to characterize neighborhood environments (green streets, visible utility wires, and dilapidated buildings) and examined cross-sectional associations with chronic health outcomes among patients from the University of California, San Francisco Health system with outpatient visits from 2015 to 2017. Logistic regression models were adjusted for patient age, sex, marital status, race/ethnicity, insurance status, English as preferred language, assignment of a primary care provider, and neighborhood socioeconomic status of the census tract in which the patient resided. Among 214,163 patients residing in California, those living in communities in the highest tertile of green streets had 16–29% lower prevalence of coronary artery disease, hypertension, and diabetes compared to those living in communities in the lowest tertile. Conversely, a higher presence of visible utility wires overhead was associated with 10–26% more coronary artery disease and hypertension, and a higher presence of dilapidated buildings was associated with 12–20% greater prevalence of coronary artery disease, hypertension, and diabetes. GSV images and computer vision models can be used to understand contextual factors influencing patient health outcomes and inform structural and place-based interventions to promote population health.
  • Thumbnail Image
    Item
    Google Street View Images as Predictors of Patient Health Outcomes, 2017–2019
    (MDPI, 2022-01-27) Nguyen, Quynh C.; Belnap, Tom; Dwivedi, Pallavi; Deligani, Amir Hossein Nazem; Kumar, Abhinav; Li, Dapeng; Whitaker, Ross; Keralis, Jessica; Mane, Heran; Yue, Xiaohe; Nguyen, Thu T.; Tasdizen, Tolga; Brunisholz, Kim D.
    Collecting neighborhood data can both be time- and resource-intensive, especially across broad geographies. In this study, we leveraged 1.4 million publicly available Google Street View (GSV) images from Utah to construct indicators of the neighborhood built environment and evaluate their associations with 2017–2019 health outcomes of approximately one-third of the population living in Utah. The use of electronic medical records allows for the assessment of associations between neighborhood characteristics and individual-level health outcomes while controlling for predisposing factors, which distinguishes this study from previous GSV studies that were ecological in nature. Among 938,085 adult patients, we found that individuals living in communities in the highest tertiles of green streets and non-single-family homes have 10–27% lower diabetes, uncontrolled diabetes, hypertension, and obesity, but higher substance use disorders—controlling for age, White race, Hispanic ethnicity, religion, marital status, health insurance, and area deprivation index. Conversely, the presence of visible utility wires overhead was associated with 5–10% more diabetes, uncontrolled diabetes, hypertension, obesity, and substance use disorders. Our study found that non-single-family and green streets were related to a lower prevalence of chronic conditions, while visible utility wires and single-lane roads were connected with a higher burden of chronic conditions. These contextual characteristics can better help healthcare organizations understand the drivers of their patients’ health by further considering patients’ residential environments, which present both risks and resources.
  • Thumbnail Image
    Item
    Using Convolutional Neural Networks to Derive Neighborhood Built Environments from Google Street View Images and Examine Their Associations with Health Outcomes
    (MDPI, 2022-09-24) Yue, Xiaohe; Antonietti, Anne; Alirezaei, Mitra; Tasdizen, Tolga; Li, Dapeng; Nguyen, Leah; Mane, Heran; Sun, Abby; Hu. Ming; Whitaker, Ross T.; Nguyen, Quynh C.
    Built environment neighborhood characteristics are difficult to measure and assess on a large scale. Consequently, there is a lack of sufficient data that can help us investigate neighborhood characteristics as structural determinants of health on a national level. The objective of this study is to utilize publicly available Google Street View images as a data source for characterizing built environments and to examine the influence of built environments on chronic diseases and health behaviors in the United States. Data were collected by processing 164 million Google Street View images from November 2019 across the United States. Convolutional Neural Networks, a class of multi-layer deep neural networks, were used to extract features of the built environment. Validation analyses found accuracies of 82% or higher across neighborhood characteristics. In regression analyses controlling for census tract sociodemographics, we find that single-lane roads (an indicator of lower urban development) were linked with chronic conditions and worse mental health. Walkability and urbanicity indicators such as crosswalks, sidewalks, and two or more cars were associated with better health, including reduction in depression, obesity, high blood pressure, and high cholesterol. Street signs and streetlights were also found to be associated with decreased chronic conditions. Chain link fence (physical disorder indicator) was generally associated with poorer mental health. Living in neighborhoods with a built environment that supports social interaction and physical activity can lead to positive health outcomes. Computer vision models using manually annotated Google Street View images as a training dataset were able to accurately identify neighborhood built environment characteristics. These methods increases the feasibility, scale, and efficiency of neighborhood studies on health.