School of Public Health
Permanent URI for this communityhttp://hdl.handle.net/1903/1633
The collections in this community comprise faculty research works, as well as graduate theses and dissertations.
Note: Prior to July 1, 2007, the School of Public Health was named the College of Health & Human Performance.
Browse
3 results
Search Results
Item Spatio-temporal modeling of particulate air pollution in the conterminous United States using geographic and meteorological predictors(Springer Nature, 2014-08-05) Yanosky, Jeff D; Paciorek, Christopher J; Laden, Francine; Hart, Jaime E; Puett, Robin C; Liao, Duanping; Suh, Helen HExposure to atmospheric particulate matter (PM) remains an important public health concern, although it remains difficult to quantify accurately across large geographic areas with sufficiently high spatial resolution. Recent epidemiologic analyses have demonstrated the importance of spatially- and temporally-resolved exposure estimates, which show larger PM-mediated health effects as compared to nearest monitor or county-specific ambient concentrations. We developed generalized additive mixed models that describe regional and small-scale spatial and temporal gradients (and corresponding uncertainties) in monthly mass concentrations of fine (PM2.5), inhalable (PM10), and coarse mode particle mass (PM2.5–10) for the conterminous United States (U.S.). These models expand our previously developed models for the Northeastern and Midwestern U.S. by virtue of their larger spatial domain, their inclusion of an additional 5 years of PM data to develop predictions through 2007, and their use of refined geographic covariates for population density and point-source PM emissions. Covariate selection and model validation were performed using 10-fold cross-validation (CV). The PM2.5 models had high predictive accuracy (CV R2=0.77 for both 1988–1998 and 1999–2007). While model performance remained strong, the predictive ability of models for PM10 (CV R2=0.58 for both 1988–1998 and 1999–2007) and PM2.5–10 (CV R2=0.46 and 0.52 for 1988–1998 and 1999–2007, respectively) was somewhat lower. Regional variation was found in the effects of geographic and meteorological covariates. Models generally performed well in both urban and rural areas and across seasons, though predictive performance varied somewhat by region (CV R2=0.81, 0.81, 0.83, 0.72, 0.69, 0.50, and 0.60 for the Northeast, Midwest, Southeast, Southcentral, Southwest, Northwest, and Central Plains regions, respectively, for PM2.5 from 1999–2007). Our models provide estimates of monthly-average outdoor concentrations of PM2.5, PM10, and PM2.5–10 with high spatial resolution and low bias. Thus, these models are suitable for estimating chronic exposures of populations living in the conterminous U.S. from 1988 to 2007.Item Spatial clustering of physical activity and obesity in relation to built environment factors among older women in three U.S. states(Springer Nature, 2014-12-24) Tamura, Kosuke; Puett, Robin C; Hart, Jaime E; Starnes, Heather A; Laden, Francine; Troped, Philip JIdentifying spatial clusters of chronic diseases has been conducted over the past several decades. More recently these approaches have been applied to physical activity and obesity. However, few studies have investigated built environment characteristics in relation to these spatial clusters. This study’s aims were to detect spatial clusters of physical activity and obesity, examine whether the geographic distribution of covariates affects clusters, and compare built environment characteristics inside and outside clusters. In 2004, Nurses’ Health Study participants from California, Massachusetts, and Pennsylvania completed survey items on physical activity (N = 22,599) and weight-status (N = 19,448). The spatial scan statistic was utilized to detect spatial clustering of higher and lower likelihood of obesity and meeting physical activity recommendations via walking. Clustering analyses and tests that adjusted for socio-demographic and health-related variables were conducted. Neighborhood built environment characteristics for participants inside and outside spatial clusters were compared. Seven clusters of physical activity were identified in California and Massachusetts. Two clusters of obesity were identified in Pennsylvania. Overall, adjusting for socio-demographic and health-related covariates had little effect on the size or location of clusters in the three states with a few exceptions. For instance, adjusting for husband’s education fully accounted for physical activity clusters in California. In California and Massachusetts, population density, intersection density, and diversity and density of facilities in two higher physical activity clusters were significantly greater than in neighborhoods outside of clusters. In contrast, in two other higher physical activity clusters in California and Massachusetts, population density, diversity of facilities, and density of facilities were significantly lower than in areas outside of clusters. In Pennsylvania, population density, intersection density, diversity of facilities, and certain types of facility density inside obesity clusters were significantly lower compared to areas outside the clusters. Spatial clustering techniques can identify high and low risk areas for physical activity and obesity. Although covariates significantly differed inside and outside the clusters, patterns of differences were mostly inconsistent. The findings from these spatial analyses could eventually facilitate the design and implementation of more resource-efficient, geographically targeted interventions for both physical activity and obesity.Item The association of long-term exposure to PM2.5 on all-cause mortality in the Nurses’ Health Study and the impact of measurement-error correction(Springer Nature, 2015-05-01) Hart, Jaime E; Liao, Xiaomei; Hong, Biling; Puett, Robin C; Yanosky, Jeff D; Suh, Helen; Kioumourtzoglou, Marianthi-Anna; Spiegelman, Donna; Laden, FrancineLong-term exposure to particulate matter less than 2.5 μm in diameter (PM2.5) has been consistently associated with risk of all-cause mortality. The methods used to assess exposure, such as area averages, nearest monitor values, land use regressions, and spatio-temporal models in these studies are subject to measurement error. However, to date, no study has attempted to incorporate adjustment for measurement error into a long-term study of the effects of air pollution on mortality. We followed 108,767 members of the Nurses’ Health Study (NHS) 2000–2006 and identified all deaths. Biennial mailed questionnaires provided a detailed residential address history and updated information on potential confounders. Time-varying average PM2.5 in the previous 12-months was assigned based on residential address and was predicted from either spatio-temporal prediction models or as concentrations measured at the nearest USEPA monitor. Information on the relationships of personal exposure to PM2.5 of ambient origin with spatio-temporal predicted and nearest monitor PM2.5 was available from five previous validation studies. Time-varying Cox proportional hazards models were used to estimate hazard ratios (HRs) and 95 percent confidence intervals (95%CI) for each 10 μg/m3 increase in PM2.5. Risk-set regression calibration was used to adjust estimates for measurement error. Increasing exposure to PM2.5 was associated with an increased risk of mortality, and results were similar regardless of the method chosen for exposure assessment. Specifically, the multivariable adjusted HRs for each 10 μg/m3 increase in 12-month average PM2.5 from spatio-temporal prediction models were 1.13 (95%CI:1.05, 1.22) and 1.12 (95%CI:1.05, 1.21) for concentrations at the nearest EPA monitoring location. Adjustment for measurement error increased the magnitude of the HRs 4-10% and led to wider CIs (HR = 1.18; 95%CI: 1.02, 1.36 for each 10 μg/m3 increase in PM2.5 from the spatio-temporal models and HR = 1.22; 95%CI: 1.02, 1.45 from the nearest monitor estimates). These findings support the large body of literature on the adverse effects of PM2.5, and suggest that adjustment for measurement error be considered in future studies where possible.