School of Public Health

Permanent URI for this communityhttp://hdl.handle.net/1903/1633

The collections in this community comprise faculty research works, as well as graduate theses and dissertations.

Note: Prior to July 1, 2007, the School of Public Health was named the College of Health & Human Performance.

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    Google Street View Derived Built Environment Indicators and Associations with State-Level Obesity, Physical Activity, and Chronic Disease Mortality in the United States
    (MDPI, 2020-05-22) Phan, Lynn; Yu, Weijun; Keralis, Jessica M.; Mukhija, Krishay; Dwivedi, Pallavi; Brunisholz, Kimberly D.; Javanmardi, Mehran; Tasdizen, Tolga; Nguyen, Quynh C.
    Previous studies have demonstrated that there is a high possibility that the presence of certain built environment characteristics can influence health outcomes, especially those related to obesity and physical activity. We examined the associations between select neighborhood built environment indicators (crosswalks, non-single family home buildings, single-lane roads, and visible wires), and health outcomes, including obesity, diabetes, cardiovascular disease, and premature mortality, at the state level. We utilized 31,247,167 images collected from Google Street View to create indicators for neighborhood built environment characteristics using deep learning techniques. Adjusted linear regression models were used to estimate the associations between aggregated built environment indicators and state-level health outcomes. Our results indicated that the presence of a crosswalk was associated with reductions in obesity and premature mortality. Visible wires were associated with increased obesity, decreased physical activity, and increases in premature mortality, diabetes mortality, and cardiovascular mortality (however, these results were not significant). Non-single family homes were associated with decreased diabetes and premature mortality, as well as increased physical activity and park and recreational access. Single-lane roads were associated with increased obesity and decreased park access. The findings of our study demonstrated that built environment features may be associated with a variety of adverse health outcomes.
  • Thumbnail Image
    Item
    Using 164 Million Google Street View Images to Derive Built Environment Predictors of COVID-19 Cases
    (MDPI, 2020-09-01) Nguyen, Quynh C.; Huang, Yuru; Kumar, Abhinav; Duan, Haoshu; Keralis, Jessica M.; Dwivedi, Pallavi; Meng, Hsien-Wen; Brunisholz, Kimberly D.; Jay, Jonathan; Javanmardi, Mehran; Tasdizen, Tolga
    The spread of COVID-19 is not evenly distributed. Neighborhood environments may structure risks and resources that produce COVID-19 disparities. Neighborhood built environments that allow greater flow of people into an area or impede social distancing practices may increase residents’ risk for contracting the virus. We leveraged Google Street View (GSV) images and computer vision to detect built environment features (presence of a crosswalk, non-single family home, single-lane roads, dilapidated building and visible wires). We utilized Poisson regression models to determine associations of built environment characteristics with COVID-19 cases. Indicators of mixed land use (non-single family home), walkability (sidewalks), and physical disorder (dilapidated buildings and visible wires) were connected with higher COVID-19 cases. Indicators of lower urban development (single lane roads and green streets) were connected with fewer COVID-19 cases. Percent black and percent with less than a high school education were associated with more COVID-19 cases. Our findings suggest that built environment characteristics can help characterize community-level COVID-19 risk. Sociodemographic disparities also highlight differential COVID-19 risk across groups of people. Computer vision and big data image sources make national studies of built environment effects on COVID-19 risk possible, to inform local area decision-making.
  • Thumbnail Image
    Item
    Health and the built environment in United States cities: measuring associations using Google Street View-derived indicators of the built environment
    (Springer Nature, 2020-02-12) Keralis, Jessica M.; Javanmardi, Mehran; Khanna, Sahil; Dwivedi, Pallavi; Huang, Dina; Tasdizen, Tolga; Nguyen, Quynh C.
    The built environment is a structural determinant of health and has been shown to influence health expenditures, behaviors, and outcomes. Traditional methods of assessing built environment characteristics are time-consuming and difficult to combine or compare. Google Street View (GSV) images represent a large, publicly available data source that can be used to create indicators of characteristics of the physical environment with machine learning techniques. The aim of this study is to use GSV images to measure the association of built environment features with health-related behaviors and outcomes at the census tract level.