Geography

Permanent URI for this communityhttp://hdl.handle.net/1903/2242

Browse

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    Item
    Assessing Terrestrial Ecosystem Resilience using Satellite Leaf Area Index
    (MDPI, 2020-02-11) Wu, Jinhui; Liang, Shunlin
    Quantitative approaches to measuring and assessing terrestrial ecosystem resilience, which expresses the ability of an ecosystem to recover from disturbances without shifting to an alternative state or losing function and services, is critical and essential to forecasting how terrestrial ecosystems will respond to global change. However, global and continuous terrestrial resilience measurement is fraught with difficulty, and the corresponding attribution of resilience dynamics is lacking in the literature. In this study, we assessed global terrestrial ecosystem resilience based on the long time-series GLASS LAI product and GIMMS AVHRR LAI 3g product, and validated the results using drought and fire events as the main disturbance indicators. We also analyzed the spatial and temporal variations of global terrestrial ecosystem resilience and attributed their dynamics to climate change and environmental factors. The results showed that arid and semiarid areas exhibited low resilience. We found that evergreen broadleaf forest exhibited the highest resilience (mean resilience value (from GLASS LAI): 0.6). On a global scale, the increase of mean annual precipitation had a positive impact on terrestrial resilience enhancement, while we found no consistent relationships between mean annual temperature and terrestrial resilience. For terrestrial resilience dynamics, we observed three dramatic raises of disturbance frequency in 1989, 1995, and 2001, respectively, along with three significant drops in resilience correspondingly. Our study mapped continuous spatiotemporal variation and captured interannual variations in terrestrial ecosystem resilience. This study demonstrates that remote sensing data are effective for monitoring terrestrial resilience for global ecosystem assessment.
  • Thumbnail Image
    Item
    A Comparison between Support Vector Machine and Water Cloud Model for Estimating Crop Leaf Area Index
    (MDPI, 2021-04-01) Hosseini, Mehdi; McNairn, Heather; Mitchell, Scott; Robertson, Lauren Dingle; Davidson, Andrew; Ahmadian, Nima; Bhattacharya, Avik; Borg, Erik; Conrad, Christopher; Dabrowska-Zielinska, Katarzyna; de Abelleyra, Diego; Gurdak, Radoslaw; Kumar, Vineet; Kussul, Nataliia; Mandal, Dipankar; Rao, Y. S.; Saliendra, Nicanor; Shelestov, Andrii; Spengler, Daniel; Verón, Santiago R.; Homayouni, Saeid; Becker-Reshef, Inbal
    The water cloud model (WCM) can be inverted to estimate leaf area index (LAI) using the intensity of backscatter from synthetic aperture radar (SAR) sensors. Published studies have demonstrated that the WCM can accurately estimate LAI if the model is effectively calibrated. However, calibration of this model requires access to field measures of LAI as well as soil moisture. In contrast, machine learning (ML) algorithms can be trained to estimate LAI from satellite data, even if field moisture measures are not available. In this study, a support vector machine (SVM) was trained to estimate the LAI for corn, soybeans, rice, and wheat crops. These results were compared to LAI estimates from the WCM. To complete this comparison, in situ and satellite data were collected from seven Joint Experiment for Crop Assessment and Monitoring (JECAM) sites located in Argentina, Canada, Germany, India, Poland, Ukraine and the United States of America (U.S.A.). The models used C-Band backscatter intensity for two polarizations (like-polarization (VV) and cross-polarization (VH)) acquired by the RADARSAT-2 and Sentinel-1 SAR satellites. Both the WCM and SVM models performed well in estimating the LAI of corn. For the SVM, the correlation (R) between estimated LAI for corn and LAI measured in situ was reported as 0.93, with a root mean square error (RMSE) of 0.64 m2m−2 and mean absolute error (MAE) of 0.51 m2m−2 . The WCM produced an R-value of 0.89, with only slightly higher errors (RMSE of 0.75 m2m−2 and MAE of 0.61 m2m−2 ) when estimating corn LAI. For rice, only the SVM model was tested, given the lack of soil moisture measures for this crop. In this case, both high correlations and low errors were observed in estimating the LAI of rice using SVM (R of 0.96, RMSE of 0.41 m2m−2 and MAE of 0.30 m2m−2 ). However, the results demonstrated that when the calibration points were limited (in this case for soybeans), the WCM outperformed the SVM model. This study demonstrates the importance of testing different modeling approaches over diverse agro-ecosystems to increase confidence in model performance.
  • Thumbnail Image
    Item
    Retrieving Leaf Area Index With a Neural Network Method: Simulation and Validation
    (Institute of Electrical and Electronics Engineers, 2003-09) Liang, Shunlin; Fang, Hongliang
    Leaf area index () is a crucial biophysical parameter that is indispensable for many biophysical and climatic models. A neural network algorithm in conjunction with extensive canopy and atmospheric radiative transfer simulations is presented in this paper to estimateLAIfromLandsat-7 Enhanced ThematicMapper Plus data. Two schemes were explored; the first was based on surface reflectance, and the second on top-of-atmosphere (TOA) radiance. The implication of the second scheme is that atmospheric corrections are not needed for estimating the surface LAI. A soil reflectance index (SRI) was proposed to account for variable soil background reflectances. Ground-measured LAI data acquired at Beltsville, MD were used to validate both schemes. The results indicate that both methods can be used to estimate LAI accurately. The experiments also showed that the use of SRI is very critical.
  • Thumbnail Image
    Item
    Estimation and Validation of Land Surface Broadband Albedos and Leaf Area Index From EO-1 ALI Data
    (Institute of Electrical and Electronics Engineers, 2003-06) Liang, Shunlin; Fang, Hongliang; Kaul, Monisha; Van Niel, Tom G.; McVicar, Tim R.; Pearlman, Jay S.; Huemmrich, Karl Fred; Walthall, Charles L.; Daughtry, Craig S. T.
    The Advanced Land Imager (ALI) is a multispectral sensor onboard the National Aeronautics and Space Administration Earth Observing 1 (EO-1) satellite. It has similar spatial resolution to Landsat-7 Enhanced Thematic Mapper Plus (ETM+), with three additional spectral bands. We developed new algorithms for estimating both land surface broadband albedo and leaf area index (LAI) from ALI data. A recently developed atmospheric correction algorithm for ETM+ imagery was extended to retrieve surface spectral reflectance from ALI top-of-atmosphere observations. A feature common to these algorithms is the use of new multispectral information from ALI. The additional blue band of ALI is very useful in our atmospheric correction algorithm, and two additional ALI near-infrared bands are valuable for estimating both broadband albedo and LAI. Ground measurements at Beltsville, MD, and Coleambally, Australia, were used to validate the products generated by these algorithms.