Geography
Permanent URI for this communityhttp://hdl.handle.net/1903/2242
Browse
5 results
Search Results
Item Vegetation Responses to Climate Variability in the Northern Arid to Sub-Humid Zones of Sub-Saharan Africa(MDPI, 2016-11-02) Rishmawi, Khaldoun; Prince, Stephen D.; Xue, YongkangIn water limited environments precipitation is often considered the key factor influencing vegetation growth and rates of development. However; other climate variables including temperature; humidity; the frequency and intensity of precipitation events are also known to affect productivity; either directly by changing photosynthesis and transpiration rates or indirectly by influencing water availability and plant physiology. The aim here is to quantify the spatiotemporal patterns of vegetation responses to precipitation and to additional; relevant; meteorological variables. First; an empirical; statistical analysis of the relationship between precipitation and the additional meteorological variables and a proxy of vegetation productivity (the Normalized Difference Vegetation Index; NDVI) is reported and; second; a process-oriented modeling approach to explore the hydrologic and biophysical mechanisms to which the significant empirical relationships might be attributed. The analysis was conducted in Sub-Saharan Africa; between 5 and 18°N; for a 25-year period 1982–2006; and used a new quasi-daily Advanced Very High Resolution Radiometer (AVHRR) dataset. The results suggest that vegetation; particularly in the wetter areas; does not always respond directly and proportionately to precipitation variation; either because of the non-linearity of soil moisture recharge in response to increases in precipitation; or because variations in temperature and humidity attenuate the vegetation responses to changes in water availability. We also find that productivity; independent of changes in total precipitation; is responsive to intra-annual precipitation variation. A significant consequence is that the degree of correlation of all the meteorological variables with productivity varies geographically; so no one formulation is adequate for the entire region. Put together; these results demonstrate that vegetation responses to meteorological variation are more complex than an equilibrium relationship between precipitation and productivity. In addition to their intrinsic interest; the findings have important implications for detection of anthropogenic dryland degradation (desertification); for which the effects of natural fluctuations in meteorological variables must be controlled in order to reveal non-meteorological; including anthropogenic; degradation.Item Environmental and Anthropogenic Degradation of Vegetation in the Sahel from 1982 to 2006(MDPI, 2016-11-13) Rishmawi, Khaldoun; Prince, Stephen D.There is a great deal of debate on the extent, causes, and even the reality of land degradation in the Sahel. Investigations carried out before approximately 2000 using remote sensing data suggest widespread reductions in biological productivity, while studies extending beyond 2000 consistently reveal a net increase in vegetation production, strongly related to the recovery of rainfall following the extreme droughts of the 1970s and 1980s, and thus challenging the notion of widespread, long-term, subcontinental-scale degradation. Yet, the spatial variations in the rates of vegetation recovery are not fully explained by rainfall trends. It is hypothesized that, in addition to rainfall, other meteorological variables and human land use have contributed to vegetation dynamics. Throughout most of the Sahel, the interannual variability in growing season ΣNDVIgs (measured from satellites, used as a proxy of vegetation productivity) was strongly related to rainfall, humidity, and temperature (mean r2 = 0.67), but with rainfall alone was weaker (mean r2 = 0.41). The mean and upper 95th quantile (UQ) rates of change in ΣNDVIgs in response to climate were used to predict potential ΣNDVIgs—that is, the ΣNDVIgs expected in response to climate variability alone, excluding any anthropogenic effects. The differences between predicted and observed ΣNDVIgs were regressed against time to detect any long-term (positive or negative) trends in vegetation productivity. Over most of the Sahel, the trends did not significantly depart from what is expected from the trends in meteorological variables. However, substantial and spatially contiguous areas (~8% of the total area of the Sahel) were characterized by negative, and, in some areas, positive trends. To explore whether the negative trends were human-induced, they were compared with the available data of population density, land use, and land biophysical properties that are known to affect the susceptibility of land to degradation. The spatial variations in the trends of the residuals were partly related to soils and tree cover, but also to several anthropogenic pressures.Item A Mapping Framework to Characterize Land Use in the Sudan-Sahel Region from Dense Stacks of Landsat Data(MDPI, 2019-03-16) Sedano, Fernando; Molini, Vasco; Azad, M. Abdul KalamWe developed a land cover and land use mapping framework specifically designed for agricultural systems of the Sudan-Sahel region. The mapping approach extracts information from inter- and intra-annual vegetation dynamics from dense stacks of Landsat 8 images. We applied this framework to create a 30 m spatial resolution land use map with a focus on agricultural landscapes of northern Nigeria for 2015. This map provides up-to-date information with a higher level of spatial and thematic detail resulting in a more precise characterization of agriculture in the region. The map reveals that agriculture is the main land use in the region. Arable land represents on average 52.5% of the area, higher than the reported national average for Nigeria (38.4%). Irrigated agriculture covers nearly 2.2% of the total area, reaching nearly 20% of the cultivated land when traditional floodplain agriculture systems are included, above the reported national average (0.63%). There is significant variability in land use within the region. Cultivated land in the northern section can reach values higher than 75%, most land suitable for agriculture is already under cultivation and there is limited land for future agricultural expansion. Marginal lands, not suitable for permanent agriculture, can reach 30% of the land at lower altitudes in the northeast and northwest. In contrast, the southern section presents lower land use intensity that results in a complex landscape that intertwines areas farms and larger patches of natural vegetation. This map improves the spatial detail of existing sources of LCLU information for the region and provides updated information of the current status of its agricultural landscapes. This study demonstrates the feasibility of multi temporal medium resolution remote sensing data to provide detailed and up-to-date information about agricultural systems in arid and sub arid landscapes of the Sahel region.Item Land Use and Degradation in a Desert Margin: The Northern Negev(MDPI, 2021-07-23) Prince, Stephen; Safriel, UrielDegradation in a range of land uses was examined across the transition from the arid to the semi-arid zone in the northern Negev desert, representative of developments in land use taking place throughout the West Asia and North Africa region. Primary production was used as an index of an important aspect of dryland degradation. It was derived from data provided by Landsat measurements at 0.1 ha resolution over a 2500 km2 study region—the first assessment of the degradation of a large area of a desert margin at a resolution suitable for interpretation in terms of human activities. The Local NPP Scaling (LNS) method enabled comparisons between the observed NPP and the potential, nondegraded, reference NPP. The potential was calculated by normalizing the actual NPP to remove the effects of environmental conditions that are not related to anthropogenic degradation. Of the entire study area, about 50% was found to have a significantly lower production than its potential. The degree of degradation ranged from small in pasture, around informal settlements, minimally managed dryland cropping, and a pine plantation, to high in commercial cropping and extreme in low-density afforestation. This result was unexpected as degradation in drylands is often attributed to pastoralism, and afforestation is said to offer remediation and prevention of further damage.Item Monitoring land degradation in Southern Africa by assessing changes in primary productivity.(2005-06-15) Wessels, Konrad; Prince, Stephen D.; Geography; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Land degradation is one of the most serious environmental problems of our time. Land degradation describes circumstances of reduced biological productivity. The fundamental goal of this thesis was to develop land degradation monitoring approaches based on remotely sensed estimates of vegetation production, which are capable of distinguishing human impacts from the effects of natural climatic and spatial variability. Communal homelands in South Africa (SA) are widely regarded to be severely degraded and the existence adjacent, non-degraded areas with the same soils and climate, provides a unique opportunity to test regional land degradation monitoring methods. The relationship between 1km AVHRR, growth season sumNDVI and herbaceous biomass measurements (1989-2003) was firstly tested in Kruger National Park, SA. The relationship was moderately strong, but weaker than expected. This was attributed to the fact that the small areas sampled at field sites were not representative of the spatial variability within 1x1km. The sumNDVI adequately estimated inter-annual changes in vegetation production and should therefore be useful for monitoring land degradation. Degraded areas mapped by the National-Land-Cover in north-eastern SA were compared to non-degraded areas in the same land capability units. The sumNDVI of the degraded areas was consistently lower, regardless of large variations in rainfall. However, the ecological stability and resilience of the degraded areas, as measured by the annual deviations from each pixel's mean sumNDVI, were no different to those of non-degraded areas. This suggests that the degraded areas may be in an alternative, but stable ecological state. To monitor human-induced land degradation it is essential to control for the effects of rainfall on vegetation production. Two methods were tested (i) Rain-Use Efficiency (RUE=NPP/Rainfall) and (ii) negative trends in the differences between the observed sumNDVI and the sumNDVI predicted by the rainfall using regressions calculated for each pixel (RESTREND). RUE had a strong negative correlation with rainfall and did not provide a reliable index of degradation. The RESTREND method identified areas in and around the degraded communal lands that exhibit negative trends in production per unit rainfall. This research made a significant contribution to the development of remote sensing based land degradation monitoring methods.