Geography
Permanent URI for this communityhttp://hdl.handle.net/1903/2242
Browse
4 results
Search Results
Item PARTICIPATION IN CLIMATE CHANGE ADAPTATION: THE ROLE OF SOCIAL NETWORKS IN SUPPORTING LEARNING AND COLLECTIVE ACTION(2020) Teodoro Morales, Jose Daniel; Prell, Christina; Sun, Laixiang; Geography; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Climate change is a complex problem affecting the world in different ways and posing challenges at varying governance levels. It is widely acknowledged that broad stakeholder participation is needed to adapt to increasing climate impacts. However, interactions between stakeholders are complex and not enough is known about the social processes that support stakeholder participation or how to measure its effectiveness. The main goal of this dissertation is to increase the understanding of stakeholder participation in addressing climate change problems. Using the State of Maryland (USA) as a case study, I (1) evaluate the magnitude of climate change impacts and map the stakeholder landscape in this region, and (2) I focus on a local participatory process in the eastern shore of the Chesapeake Bay, the Deal Island Peninsula Partnership (DIPP), to study how stakeholder networks facilitate learning and collective action. I found the Chesapeake Bay is experiencing severe impacts from sea-level rise, scientists and state government produce more data and indicators at larger scales, while fewer data are produced at the local level where is needed. Increasingly, participatory approaches are being employed to bridge the knowledge gap between experts, scientists, and local stakeholders. Moreover, I found that DIPP stakeholder views are predicted by their social networks of mutual understanding, respect, and influence. Finally, by modeling the co-evolution of mutual understanding ties, co-attendance, and climate change perceptions, I found that stakeholder participation enables stronger and denser social networks of mutual understanding, yet these ties do not facilitate changes in perceptions. These results suggest that fostering mutual understanding among a diverse group of stakeholders may be more relevant for collective action than changing their perceptions. This dissertation provides empirical evidence that stakeholder participation is important in climate adaptation policies and contributes to the development of measures for stakeholder participation effectiveness.Item AGRICULTURAL LAND USE, DROUGHT IMPACTS AND VULNERABILITY: A REGIONAL CASE STUDY FOR KARAMOJA, UGANDA(2017) Nakalembe, Catherine Lilian; Justice, Christopher O; Geography; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)The increasing frequency of extreme climate events brings into question the sustainability of agriculture in marginal lands, especially those already experiencing drought such as the Karamoja region in northeastern Uganda. A significant amount of research often qualitative has been conducted documenting drought and its impact on Karamoja. Taking a mixed methods approach, this study combined remotely-sensed satellite data, national agricultural surveys, census, and field data to expand on empirical knowledge on agricultural drought, land use and human perceptions of drought necessary for comprehensive drought forecasting, monitoring, and management. Results from this study showed that Karamoja is at least twice more vulnerable to drought than any other region in Uganda. This is because of its very low adaptive capacity in part due to high poverty rates and a higher dependency on the natural environment for livelihood. Analysis of satellite data quantified a 229 percent increase in cropland area in Karamoja between 2000 and 2011/12, driven largely by agricultural development programs. Underlying forces (e.g., cropland expansion programs and controlled grazing) originating from land use policy and development programs, more than proximate causes (direct local level actions) remain the major drivers of this expansion. Although the cultivated area has dramatically increased, there is no quantifiable overall increase in yield or per-capita production as evidenced by the recurrent poor food security. This status quo, (poor yields and dependence on food aid) is likely to continue as more land is put to crop cultivation by poor households and meager investments are made in livestock-based livelihood opportunities. The cropland area mask developed in this research facilitated the characterization of drought within agricultural areas. The drought information developed by this study is spatially and temporally explicit, showing differences in severity between years and between districts. Overall Abim District showed the least variation and is the least impacted while, Moroto District had the highest inter-annual variability and was often the most severely impacted. This research presents an approach to predict the number of people who would require food aid during the lean season in Karamoja (December to March) within a reasonable margin of error (less than 10\%) at the peak of the growing season (August/September), although the need for more extensive testing is recognized. The method takes advantage of readily available satellite data and can contribute to planning for a timely and appropriate response. A case study of farmer's perceptions of drought in Moroto District found that many farmers feel helpless and have no control of their future. For the majority of farmers in the district, past experiences of drought do not necessarily impact on future expectations of drought and many have no long-term adjustment plans. Quite often the majority of the population depends on emergency food assistance, building a culture of dependency. The analysis indicates that factors such as; conflict (insecurity) and interventions by government and international agencies intermingle with culture to have a profound direct influence on farmers' perception of drought amongst communities in Moroto district. This research shows that satellite data can provide the much-needed information to fill the gaps that inhibit long-term drought monitoring, at a significantly lower cost than traditional climate station-based monitoring in data scarce regions like Karamoja. It also points to a way forward for proactive assessment, planning, and response.Item A Spatial-Temporal Analysis of Wetland Loss and Section 404 Permitting on the Delmarva Peninsula from 1980 to to 2010(2017) Stubbs, Quentin A.; Yeo, In-Young; Geography; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Geospatial approaches for wetland change analyses have emphasized the evaluation of landscape change on a local level, but have often neglected to examine and integrate regional trends and patterns of land use and land cover change as well as the impacts of wetland management policies. This study attempts to bridge the gaps by integrating a geospatial assessment of land cover change and a geostatistical analysis of the physical and anthropogenic drivers of wetland change. The aim is to demonstrate how urban development, conservation, and climate change policy decisions influenced wetland change trends and patterns on the Delmarva Peninsula from 1980 to 2010. Historical data on the nine counties on the Delmarva Peninsula illustrated the dynamism of population growth, sprawl, and different wetland management strategies. Data sets from the National Oceanic and Atmospheric Administration, the Chesapeake Bay Program, the U.S. Army Corps of Engineers, the U.S. Fish and Wildlife Service, and the U.S. Census Bureau, and other sources were gathered and assessed. A land cover database was developed and analyzed using geospatial techniques, such as cross tabulation matrices and hot spot density analyses, in order to quantify and locate land cover change between 1984 and 2010. The results highlighted that anthropogenic drivers such as urbanization and agriculture were associated with the loss of wetlands in coastal areas as well as in upland, forested, suburban areas that were at low risk to flooding, but required deforestation in order to expand residential and commercial development. The greatest quantity and percentage of loss occurred between 1992 and 2001, and it was likely the result of increases in tourism and suburban sprawl (e.g., the Housing Boom and roadway expansion). The majority of wetland loss tapered off in 2000, except on coastal areas suffering from sea level rise and shoreline erosion. The results also reinforced the need to address the negative impacts from certain activities related to agriculture and silviculture, which are exempt from Section 404 of the Clean Water Act, have on wetlands. Physical drivers and processes like inundation from sea level rise and soil erosion from surface runoff force communities to simultaneously adapt to multiple drivers of wetland loss and alteration. This study supports the hypothesis that an increase in development and wetland permitting indicates an increased a risk of wetland loss. In the end, the study demonstrates that geostatistical modelling techniques can be used to predict wetland loss, and that model performance and accuracy can be improved by reducing the multicollinearity of independent variables. Planners and policymakers can use these models to better understand the wetland locations that are at greatest risk to loss, as well as the drivers and landscape conditions that have the greatest influence on the probability of wetland loss.Item Contemporary Forest Cover Dynamics in Myanmar(2016) Biswas, Sumalika; Justice, Christopher O.; Vadrevu, Krishna P.; Geography; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Understanding forest cover dynamics is important for a nation’s environmental, social and political commitments. In the past decade, Myanmar had the highest deforestation rate, in mainland South East Asia (Hansen et al., 2013). Further, in 2009, Myanmar embarked on a landmark political change from military regime to democratic transition which significantly impacted its forest cover. Myanmar also ranks first with respect to forest fires in South/Southeast Asia. In Myanmar, forest cover loss and fire are intrinsically linked through the traditional taungya system of slash and burn. Thus, quantifying factors controlling forest fires in Myanmar is an important topic that needs attention. Although the Myanmar government established protected areas throughout the country to conserve forests, their effectiveness remains unevaluated. This dissertation aims to understand the current status of forest cover dynamics in Myanmar. The five chapters in this dissertation address the impact of the political transition on forest cover loss and fragmentation, fire disturbance in tropical evergreen and deciduous forests including the factors controlling vegetation fires in the protected and non-protected forests. The dissertation contributes to the existing knowledge in land cover and land use change science (LCLUC), ii especially the impact of institutional changes on forest cover in the tropics. The analysis of the relationship between forest loss, fire and effectiveness of the protected areas addressed in the study, contributes to regional knowledge on fire and conservation science respectively. The findings of this dissertation depict that in Myanmar, the political transition to democracy significantly influenced its forest cover. Our analysis showed that during 2001-2014, a total loss of 2,030,101 ha of forest occurred at the rate of 145,007.21 ha/year with a linear increase of 15,359 (±1793) ha/year. The observed increase in variance in between 2008-2011 coincides with political transition period which started with the formation of the new Constitution in 2008 and ended with the military government handing over power to the democratic government in 2011. Analysis of trend and variance patterns of two landscape fragmentation metrics (Number of Patches and Mean Patch Area) at the provincial level show the influence of the political transition on landscape fragmentation. The impact of political transition was more pronounced in provinces associated with plantations and urban areas. Among the rubber producing States, the border States, Shan, Kayah, and Kayin were more impacted compared to inland Mon. Tanintharyi and Bago Regions showed higher variance in residuals of both metrics before the transition occurred due to the military government supported oil palm and teak plantations. Fragmentation and the variance in fragmentation metrics in Kachin increased post 2008. Apart from plantation areas, urban areas like Yangon and Mandalay showed high fragmentation post 2009 period after the new government was formed. We attribute the forest loss and fragmentation to the economic and structural reforms of the democratic government, specifically to the increased granting of agricultural concessions and logging for plantations. iii A study of the fire regime from 2003 to 2012 using MODIS satellite data suggested March as the peak of the fire season with 12900 km2 of Burned Area (BA) and 95000 fire counts. Forests accounted for majority (41.3%) of the total BA and most fires (89.7%) resulted in medium or high vegetation disturbance. A higher negative correlation between BA and Gross Primary Productivity (GPP) was reported for deciduous forests than for evergreen forests (r=0.49 vs r = 0.36, p ~ 0). A maximum decrease in 29% of original GPP (2007-2012) was observed in the evergreen forest patches. The scale-dependent correlation analysis suggested significant BA-GPP correlation at 1 × 1 degree, as compared to finer resolutions. These results highlight the significance of fires impacting carbon cycle. An in-depth analysis of fire causative factors in Myanmar was studied. The mean fire density in non-protected areas was found to be two times more than in protected areas. Fire-land cover partition analysis suggested dominant fire occurrences in the savannas (protected areas) and woody savannas (non-protected areas). The five major fire causative factors in protected areas in descending order were found to be population density, land cover, tree cover percent, travel time from nearest city and temperature. The causative factors in non-protected areas were population density, tree cover percent, travel time from nearest city, temperature and elevation. The fire susceptibility analysis showed distinct spatial patterns with central Myanmar as a hot spot region of vegetation fires. Results from propensity score matching suggested that forests within protected areas have 11% less fires than non-protected areas. These findings provide information to policy makers about the current forest loss, forest fragmentation and forest fire hotspots, status of forest conservation and can be used to inform, update or evaluate policies. These findings are timely and can guide policy makers to arrive at best management strategies as the new government is formulating policies and laws and amending old ones to aid forest conservation.