Geography
Permanent URI for this communityhttp://hdl.handle.net/1903/2242
Browse
2 results
Search Results
Item Surface Shortwave Net Radiation Estimation from FengYun-3 MERSI Data(MDPI, 2015-05-19) Wang, Dongdong; Liang, Shunlin; He, Tao; Cao, Yunfeng; Jiang, BoThe Medium-Resolution Spectral Imager (MERSI) is one of the major payloads of China’s second-generation polar-orbiting meteorological satellite, FengYun-3 (FY-3), and it is similar to the Moderate-Resolution Imaging Spectroradiometer (MODIS). The MERSI data are suitable for mapping terrestrial, atmospheric and oceanographic variables at continental to global scales. This study presents a direct-estimation method to retrieve surface shortwave net radiation (SSNR) data from MERSI top-of-atmosphere (TOA) reflectance and cloud mask products. This study is the first attempt to use the MERSI to retrieve SSNR data. Several critical issues concerning remote sensing of SSNR were investigated, including scale effects in validating SSNR data, impacts of the MERSI calibration update on the estimation of SSNR and the dependency of the retrieval accuracy of SSNR data on view geometry. We also incorporated data from twin MODIS sensors to assess how time and the number of satellite overpasses affect the retrieval of SSNR data. Validation against one-year data over seven Surface Radiation Budget Network (SURFRAD) stations showed that the presented algorithm estimated daily SSNR at the original resolution of the MERSI with a root mean square error (RMSE) of 41.9 W/m2 and a bias of −1.6 W/m2. Aggregated to a spatial resolution of 161 km, the RMSE of MERSI retrievals can be reduced by approximately 10 W/m2. Combined with MODIS data, the RMSE of daily SSNR estimation can be further reduced to 22.2 W/m2. Compared with that of daily SSNR, estimation of monthly SSNR is less affected by the number of satellite overpasses per day. The RMSE of monthly SSNR from a single MERSI sensor is as small as 13.5 W/m2.Item A New Set of MODIS Land Products (MCD18): Downward Shortwave Radiation and Photosynthetically Active Radiation(MDPI, 2020-01-03) Wang, Dongdong; Liang, Shunlin; Zhang, Yi; Gao, Xueyuan; Brown, Meredith G. L.; Jia, AolinSurface downward shortwave radiation (DSR) and photosynthetically active radiation (PAR), its visible component, are key parameters needed for many land process models and terrestrial applications. Most existing DSR and PAR products were developed for climate studies and therefore have coarse spatial resolutions, which cannot satisfy the requirements of many applications. This paper introduces a new global high-resolution product of DSR (MCD18A1) and PAR (MCD18A2) over land surfaces using the MODIS data. The current version is Collection 6.0 at the spatial resolution of 5 km and two temporal resolutions (instantaneous and three-hour). A look-up table (LUT) based retrieval approach was chosen as the main operational algorithm so as to generate the products from the MODIS top-of-atmosphere (TOA) reflectance and other ancillary data sets. The new MCD18 products are archived and distributed via NASA’s Land Processes Distributed Active Archive Center (LP DAAC). The products have been validated based on one year of ground radiation measurements at 33 Baseline Surface Radiation Network (BSRN) and 25 AmeriFlux stations. The instantaneous DSR has a bias of −15.4 W/m2 and root mean square error (RMSE) of 101.0 W/m2, while the instantaneous PAR has a bias of −0.6 W/m2 and RMSE of 45.7 W/m2. RMSE of daily DSR is 32.3 W/m2, and that of the daily PAR is 13.1 W/m2. The accuracy of the new MODIS daily DSR data is higher than the GLASS product and lower than the CERES product, while the latter incorporates additional geostationary data with better capturing DSR diurnal variability. MCD18 products are currently under reprocessing and the new version (Collection 6.1) will provide improved spatial resolution (1 km) and accuracy.