Geography

Permanent URI for this communityhttp://hdl.handle.net/1903/2242

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    A Disease Control-Oriented Land Cover Land Use Map for Myanmar
    (MDPI, 2021-06-13) Chen, Dong; Shevade, Varada; Baer, Allison; He, Jiaying; Hoffman-Hall, Amanda; Ying, Qing; Li, Yao; Loboda, Tatiana V.
    Malaria is a serious infectious disease that leads to massive casualties globally. Myanmar is a key battleground for the global fight against malaria because it is where the emergence of drug-resistant malaria parasites has been documented. Controlling the spread of malaria in Myanmar thus carries global significance, because the failure to do so would lead to devastating consequences in vast areas where malaria is prevalent in tropical/subtropical regions around the world. Thanks to its wide and consistent spatial coverage, remote sensing has become increasingly used in the public health domain. Specifically, remote sensing-based land cover/land use (LCLU) maps present a powerful tool that provides critical information on population distribution and on the potential human-vector interactions interfaces on a large spatial scale. Here, we present a 30-meter LCLU map that was created specifically for the malaria control and eradication efforts in Myanmar. This bottom-up approach can be modified and customized to other vector-borne infectious diseases in Myanmar or other Southeastern Asian countries.
  • Thumbnail Image
    Item
    Missing Burns in the High Northern Latitudes: The Case for Regionally Focused Burned Area Products
    (MDPI, 2021-10-16) Chen, Dong; Shevade, Varada; Baer, Allison; Loboda, Tatiana V.
    Global estimates of burned areas, enabled by the wide-open access to the standard data products from the Moderate Resolution Imaging Spectroradiometer (MODIS), are heavily relied on by scientists and managers studying issues related to wildfire occurrence and its worldwide consequences. While these datasets, particularly the MODIS MCD64A1 product, have fundamentally improved our understanding of wildfire regimes at the global scale, their performance may be less reliable in certain regions due to a series of region- or ecosystem-specific challenges. Previous studies have indicated that global burned area products tend to underestimate the extent of the burned area within some parts of the boreal domain. Despite this, global products are still being regularly used by research activities and management efforts in the northern regions, likely due to a lack of understanding of the spatial scale of their Arctic-specific limitations, as well as an absence of more reliable alternative products. In this study, we evaluated the performance of two widely used global burned area products, MCD64A1 and FireCCI51, in the circumpolar boreal forests and tundra between 2001 and 2015. Our two-step evaluation shows that MCD64A1 has high commission and omission errors in mapping burned areas in the boreal forests and tundra regions in North America. The omission error overshadows the commission error, leading to MCD64A1 considerably underestimating burned areas in these high northern latitude domains. Based on our estimation, MCD64A1 missed nearly half the total burned areas in the Alaskan and Canadian boreal forests and the tundra during the 15-year period, amounting to an area (74,768 km2) that is equivalent to the land area of the United States state of South Carolina. While the FireCCI51 product performs much better than MCD64A1 in terms of commission error, we found that it also missed about 40% of burned areas in North America north of 60° N between 2001 and 2015. Our intercomparison of MCD64A1 and FireCCI51 with a regionally adapted MODIS-based Arctic Boreal Burned Area (ABBA) shows that the latter outperforms both MCD64A1 and FireCCI51 by a large margin, particularly in terms of omission error, and thus delivers a considerably more accurate and consistent estimate of fire activity in the high northern latitudes. Considering the fact that boreal forests and tundra represent the largest carbon pool on Earth and that wildfire is the dominant disturbance agent in these ecosystems, our study presents a strong case for regional burned area products like ABBA to be included in future Earth system models as the critical input for understanding wildfires’ impacts on global carbon cycling and energy budget.
  • Thumbnail Image
    Item
    QUANTIFYING VULNERABILITY OF PENINSULAR MALAYSIA’S TIGER LANDSCAPE TO FUTURE FOREST LOSS
    (2018) Shevade, Varada; Loboda, Tatiana V.; Geography; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Agricultural expansion has been the dominant driver of tropical deforestation and increased consumption of commodities and resulting global trade have become distal drivers of land cover change. Habitat loss and fragmentation threaten biodiversity globally. Peninsular Malaysia, particularly, has a long history of land cover land use change and expansion of plantations like those of oil palm (Elaeis guineensis). Deforestation and plantation expansion threaten the Malayan tiger (Panthera tigris jacksonii), a critically endangered subspecies of the tiger endemic to the Malay Peninsula. Conservation of tigers and their long-term viability requires not only the protection of habitat patches but also maintenance of corridors connecting habitat patches. The goal of this dissertation was to understand patterns of recent forest loss and conversions, determine the drivers of these changes, and model future forest loss and changes to landscape connectivity for tigers. Satellite remote sensing data were used to map and estimate the extent of forest loss and forest conversions to plantations within Peninsular Malaysia. Mapped forest conversions to industrial oil palm plantations were used to model the factors influencing such conversions and the constraints to recent and future conversions. Finally, the mapped forest loss was used to model the deforestation probability for the region and develop scenarios of future forest loss. This study indicates that despite the history of land cover change and an extensive area under plantations, natural forest loss has continued within Peninsular Malaysia with about half of the cleared forests being converted to plantations. Proximity to pre-existing oil palm plantations is the most important determinant of forest conversions to oil palm. Such conversions are increasingly in more marginal lands indicating that biophysical suitability alone cannot determine where future conversions might take place. Forest conversions to oil palm plantations within the region are more constrained by accessibility to infrastructure rather than biophysical suitability for oil palm. The projected patterns of loss indicate lowland forests along the southeastern coast and in the center of the Peninsula are most vulnerable to future loss. This projected loss will likely reduce the connectivity between forest patches further isolating tiger populations in the southern part of the Peninsula. This study demonstrates the continued pressure on Peninsular Malaysia’s forests, the potential impact of persistent deforestation on forest connectivity, and draws attention to the need for conservation and restoration of forest linkages to ensure viability of the remaining Malayan tiger population.