Geography

Permanent URI for this communityhttp://hdl.handle.net/1903/2242

Browse

Search Results

Now showing 1 - 10 of 23
  • Item
    Surface Shortwave Net Radiation Estimation from FengYun-3 MERSI Data
    (MDPI, 2015-05-19) Wang, Dongdong; Liang, Shunlin; He, Tao; Cao, Yunfeng; Jiang, Bo
    The Medium-Resolution Spectral Imager (MERSI) is one of the major payloads of China’s second-generation polar-orbiting meteorological satellite, FengYun-3 (FY-3), and it is similar to the Moderate-Resolution Imaging Spectroradiometer (MODIS). The MERSI data are suitable for mapping terrestrial, atmospheric and oceanographic variables at continental to global scales. This study presents a direct-estimation method to retrieve surface shortwave net radiation (SSNR) data from MERSI top-of-atmosphere (TOA) reflectance and cloud mask products. This study is the first attempt to use the MERSI to retrieve SSNR data. Several critical issues concerning remote sensing of SSNR were investigated, including scale effects in validating SSNR data, impacts of the MERSI calibration update on the estimation of SSNR and the dependency of the retrieval accuracy of SSNR data on view geometry. We also incorporated data from twin MODIS sensors to assess how time and the number of satellite overpasses affect the retrieval of SSNR data. Validation against one-year data over seven Surface Radiation Budget Network (SURFRAD) stations showed that the presented algorithm estimated daily SSNR at the original resolution of the MERSI with a root mean square error (RMSE) of 41.9 W/m2 and a bias of −1.6 W/m2. Aggregated to a spatial resolution of 161 km, the RMSE of MERSI retrievals can be reduced by approximately 10 W/m2. Combined with MODIS data, the RMSE of daily SSNR estimation can be further reduced to 22.2 W/m2. Compared with that of daily SSNR, estimation of monthly SSNR is less affected by the number of satellite overpasses per day. The RMSE of monthly SSNR from a single MERSI sensor is as small as 13.5 W/m2.
  • Item
    Land Surface Albedo Estimation from Chinese HJ Satellite Data Based on the Direct Estimation Approach
    (MDPI, 2015-05-04) He, Tao; Liang, Shunlin; Wang, Dongdong; Chen, Xiaona; Song, Dan-Xia; Jiang, Bo
    Monitoring surface albedo at medium-to-fine resolution (<100 m) has become increasingly important for medium-to-fine scale applications and coarse-resolution data evaluation. This paper presents a method for estimating surface albedo directly using top-of-atmosphere reflectance. This is the first attempt to derive surface albedo for both snow-free and snow-covered conditions from medium-resolution data with a single approach. We applied this method to the multispectral data from the wide-swath Chinese HuanJing (HJ) satellites at a spatial resolution of 30 m to demonstrate the feasibility of this data for surface albedo monitoring over rapidly changing surfaces. Validation against ground measurements shows that the method is capable of accurately estimating surface albedo over both snow-free and snow-covered surfaces with an overall root mean square error (RMSE) of 0.030 and r-square (R2) of 0.947. The comparison between HJ albedo estimates and the Moderate Resolution Imaging Spectral Radiometer (MODIS) albedo product suggests that the HJ data and proposed algorithm can generate robust albedo estimates over various land cover types with an RMSE of 0.011–0.014. The accuracy of HJ albedo estimation improves with the increase in view zenith angles, which further demonstrates the unique advantage of wide-swath satellite data in albedo estimation.
  • Item
    Assessment of the Suomi NPP VIIRS Land Surface Albedo Data Using Station Measurements and High-Resolution Albedo Maps
    (MDPI, 2016-02-08) Zhou, Yuan; Wang, Dongdong; Liang, Shunlin; Yu, Yunyue; He, Tao
    Land surface albedo (LSA), one of the Visible Infrared Imaging Radiometer Suite (VIIRS) environmental data records (EDRs), is a fundamental component for linking the land surface and the climate system by regulating shortwave energy exchange between the land and the atmosphere. Currently, the improved bright pixel sub-algorithm (BPSA) is a unique algorithm employed by VIIRS to routinely generate LSA EDR from VIIRS top-of-atmosphere (TOA) observations. As a product validation procedure, LSA EDR reached validated (V1 stage) maturity in December 2014. This study summarizes recent progress in algorithm refinement, and presents comprehensive validation and evaluation results of VIIRS LSA by using extensive field measurements, Moderate Resolution Imaging Spectroradiometer (MODIS) albedo product, and Landsat-retrieved albedo maps. Results indicate that: (1) by testing the updated desert-specific look-up-table (LUT) that uses a stricter standard to select the training data specific for desert aerosol type in our local environment, it is found that the VIIRS LSA retrieval accuracy is improved over a desert surface and the absolute root mean square error (RMSE) is reduced from 0.036 to 0.023, suggesting the potential of the updated desert LUT to the improve the VIIRS LSA product accuracy; (2) LSA retrieval on snow-covered surfaces is more accurate if the newly developed snow-specific LUT (RMSE = 0.082) replaces the generic LUT (RMSE = 0.093) that is employed in the current operational LSA EDR production; (3) VIIRS LSA is also comparable to high-resolution Landsat albedo retrieval (RMSE < 0.04), although Landsat albedo has a slightly higher accuracy, probably owing to higher spatial resolution with less impacts of mixed pixel; (4) VIIRS LSA retrievals agree well with the MODIS albedo product over various land surface types, with overall RMSE of lower than 0.05 and the overall bias as low as 0.025, demonstrating the comparable data quality between VIIRS and the MODIS LSA product.
  • Item
    Developing an Integrated Remote Sensing Based Biodiversity Index for Predicting Animal Species Richness
    (MDPI, 2018-05-10) Wu, Jinhui; Liang, Shunlin
    Many remote sensing metrics have been applied in large-scale animal species monitoring and conservation. However, the capabilities of these metrics have not been well compared and assessed. In this study, we investigated the correlation of 21 remote sensing metrics in three categories with the global species richness of three different animal classes using several statistical methods. As a result, we developed a new index by integrating several highly correlated metrics. Of the 21 remote sensing metrics analyzed, evapotranspiration (ET) had the greatest impact on species richness on a global scale (explained variance: 52%). The metrics with a high explained variance on the global scale were mainly in the energy/productivity category. The metrics in the texture category exhibited higher correlation with species richness at regional scales. We found that radiance and temperature had a larger impact on the distribution of bird richness, compared to their impacts on the distributions of both amphibians and mammals. Three machine learning models (i.e., support vector machine, random forests, and neural networks) were evaluated for metric integration, and the random forest model showed the best performance. Our newly developed index exhibited a 0.7 explained variance for the three animal classes’ species richness on a global scale, with an explained variance that was 20% higher than any of the univariate metrics.
  • Item
    Recent Progress in Quantitative Land Remote Sensing in China
    (MDPI, 2018-09-18) Liang, Shunlin; Shi, Jiancheng; Yan, Guangjian
    During the past forty years, since the first book with a title mentioning quantitative and remote sensing was published [1], quantitative land remote sensing has advanced dramatically, and numerous books have been published since then [2,3,4,5,6] although some of them did not use quantitative land remote sensing in their titles. Quantitative land remote sensing has not been explicitly defined in the literature, but we consider it as a sub-discipline of remote sensing including the following components (see Figure 1): radiometric preprocessing, inversion, high-level product generation, and applications. Many inversion algorithms rely on physical models of radiation regimes of landscapes, which link with remotely-sensed data. Generating high-level satellite products of land surface biophysical and biochemical variables create the key bridge between remote sensing science and applications. Conducting in situ measurements for validation of inversion algorithms and satellite products is also a critical component. Application of satellite products to address scientific and societal relevant issues will ultimately decide the future of quantitative land remote sensing.
  • Item
    Evaluation of Five Satellite Top-of-Atmosphere Albedo Products over Land
    (MDPI, 2019-12-06) Zhan, Chuan; Allan, Richard P.; Liang, Shunlin; Wang, Dongdong; Song, Zhen
    Five satellite top-of-atmosphere (TOA) albedo products over land were evaluated in this study including global products from the Advanced Very High Resolution Radiometer (AVHRR) (TAL-AVHRR), Moderate Resolution Imaging Spectroradiometer (MODIS) (TAL-MODIS), and Clouds and the Earth’s Radiant Energy System (CERES); one regional product from the Climate Monitoring Satellite Application Facility (CM SAF); and one harmonized product termed Diagnosing Earth’s Energy Pathways in the Climate system (DEEP-C). Results showed that overall, there is good consistency among these five products, particularly after the year 2000. The differences among these products in the high-latitude regions were relatively larger. The percentage differences among TAL-AVHRR, TAL-MODIS, and CERES were generally less than 20%, while the differences between TAL-AVHRR and DEEP-C before 2000 were much larger. Except for the obvious decrease in the differences after 2000, the differences did not show significant changes over time, but varied among different regions. The differences between TAL-AVHRR and the other products were relatively large in the high-latitude regions of North America, Asia, and the Maritime Continent, while the differences between DEEP-C and CM SAF in Europe and Africa were smaller. Interannual variability was consistent between products after 2000, before which the differences among the three products were much larger.
  • Item
    Land Surface Albedo Estimation from Chinese HJ Satellite Data Based on the Direct Estimation Approach
    (Multidisciplinary Digital Publishing Institute (MDPI), 2015-05-04) He, Tao; Liang, Shunlin; Wang, Dongdong; Chen, Xiaona; Song, Dan-Xia; Jiang, Bo
    Monitoring surface albedo at medium-to-fine resolution (<100 m) has become increasingly important for medium-to-fine scale applications and coarse-resolution data evaluation. This paper presents a method for estimating surface albedo directly using top-of-atmosphere reflectance. This is the first attempt to derive surface albedo for both snow-free and snow-covered conditions from medium-resolution data with a single approach. We applied this method to the multispectral data from the wide-swath Chinese HuanJing (HJ) satellites at a spatial resolution of 30 m to demonstrate the feasibility of this data for surface albedo monitoring over rapidly changing surfaces. Validation against ground measurements shows that the method is capable of accurately estimating surface albedo over both snow-free and snow-covered surfaces with an overall root mean square error (RMSE) of 0.030 and r-square (R2) of 0.947. The comparison between HJ albedo estimates and the Moderate Resolution Imaging Spectral Radiometer (MODIS) albedo product suggests that the HJ data and proposed algorithm can generate robust albedo estimates over various land cover types with an RMSE of 0.011–0.014. The accuracy of HJ albedo estimation improves with the increase in view zenith angles, which further demonstrates the unique advantage of wide-swath satellite data in albedo estimation.
  • Item
    Calculation of the Angular Radiance Distribution for a Coupled Atmosphere and Canopy
    (Institute of Electrical and Electronics Engineers, 1993-03) Liang, Shunlin; Strahler, Alan H.
    The radiative transfer equations for a coupled atmosphere and canopy are solved numerically by an improved Gause-Seidel iteration algorithm. The radiation field is decomposed into three components: unscattered sunlight, single scattering, and multiple scattering radiance for which the corresponding equations and boundary conditions are set up and their analytical or iterational solutions are explicitly derived. The classic Guass-Seidel algorithm has been widely applied in atomospheric research. This is its first application for calculating the multiple scattering radiance of a coupled atmosphere and canopy. This algorithm enables us to obtain the internal radiation field as well as radiances at boundaries. Any form of bidirectional reflectance distribution function (BRDF) as a boundary condition can be easily incorporated into the iteration procedure. The hotspot effect of the canopy is accommodated by means of the modification of the extiniction coefficients of upward single scattering radiation and unscatteered sunlight using the formulation of Nilson and Kuusk. To reduce the computation for the case of large optical thickness, an improved iteration formula is derived to speed convergence. The upwelling radiances have been evaluated for different atmospheric conditions, leaf area index (LAI), leaf angle distribution (LAD), leaf size and so on. The formulation presented in this paper is also well suited to analyze the relative magnitude of multiple scattering radiance and single scattering radiance in both the visible and near infrared regions.
  • Item
    An Optimization Algorithm for Separating Land Surface Temperature and Emissivity from Multispectral Thermal Infrared Imagery
    (Institute of Electrical and Electronics Engineers, 2001-02) Liang, Shunlin
    Land surface temperature (LST) and emissivity are important components of land surface modeling and applications. The only practical means of obtaining LST at spatial and temporal resolutions appropriate for most modeling applications is through remote sensing. While the popular split-window method has been widely used to estimate LST, it requires known emissivity values. Multispectral thermal infrared imagery provides us with an excellent opportunity to estimate both LST and emissivity simultaneously, but the difficulty is that a single multispectral thermal measurement with bands presents equations in + 1 unknowns ( spectral emissivities and LST). In this study, we developed a general algorithm that can separate land surface emissivity and LST from any multispectral thermal imagery, such as moderate-resolution imaging spectroradiometer (MODIS) and advanced spaceborne thermal emission and reflection radiometer (ASTER). The central idea was to establish empirical constraints, and regularization methods were used to estimate both emissivity and LST through an optimization algorithm. It allows us to incorporate any prior knowledge in a formal way. The numerical experiments showed that this algorithm is very effective (more than 43.4% inversion results differed from the actual LST within 0.5 , 70.2% within 1 and 84% within 1.5 ), although improvements are still needed.
  • Item
    Atmospheric Correction of Landsat ETM+ Land Surface Imagery—Part I: Methods
    (Institute of Electrical and Electronics Engineers, 2001-11) Liang, Shunlin; Fang, Hongliang; Chen, Mingzhen
    To extract quantitative information from the Enhanced Thematic Mapper-Plus (ETM+) imagery accurately, atmospheric correction is a necessary step. After reviewing historical development of atmospheric correction of Landsat thematic mapper (TM) imagery, we present a new algorithm that can effectively estimate the spatial distribution of atmospheric aerosols and retrieve surface reflectance from ETM+ imagery under general atmospheric and surface conditions. This algorithm is therefore suitable for operational applications. A new formula that accounts for adjacency effects is also presented. Several examples are given to demonstrate that this new algorithm works very well under a variety of atmospheric and surface conditions. The companion paper will validate this method using ground measurements, and illustrate the improvements of several applications due to atmospheric correction.