Geography
Permanent URI for this communityhttp://hdl.handle.net/1903/2242
Browse
3 results
Search Results
Item Surface Shortwave Net Radiation Estimation from FengYun-3 MERSI Data(MDPI, 2015-05-19) Wang, Dongdong; Liang, Shunlin; He, Tao; Cao, Yunfeng; Jiang, BoThe Medium-Resolution Spectral Imager (MERSI) is one of the major payloads of China’s second-generation polar-orbiting meteorological satellite, FengYun-3 (FY-3), and it is similar to the Moderate-Resolution Imaging Spectroradiometer (MODIS). The MERSI data are suitable for mapping terrestrial, atmospheric and oceanographic variables at continental to global scales. This study presents a direct-estimation method to retrieve surface shortwave net radiation (SSNR) data from MERSI top-of-atmosphere (TOA) reflectance and cloud mask products. This study is the first attempt to use the MERSI to retrieve SSNR data. Several critical issues concerning remote sensing of SSNR were investigated, including scale effects in validating SSNR data, impacts of the MERSI calibration update on the estimation of SSNR and the dependency of the retrieval accuracy of SSNR data on view geometry. We also incorporated data from twin MODIS sensors to assess how time and the number of satellite overpasses affect the retrieval of SSNR data. Validation against one-year data over seven Surface Radiation Budget Network (SURFRAD) stations showed that the presented algorithm estimated daily SSNR at the original resolution of the MERSI with a root mean square error (RMSE) of 41.9 W/m2 and a bias of −1.6 W/m2. Aggregated to a spatial resolution of 161 km, the RMSE of MERSI retrievals can be reduced by approximately 10 W/m2. Combined with MODIS data, the RMSE of daily SSNR estimation can be further reduced to 22.2 W/m2. Compared with that of daily SSNR, estimation of monthly SSNR is less affected by the number of satellite overpasses per day. The RMSE of monthly SSNR from a single MERSI sensor is as small as 13.5 W/m2.Item Intercomparison of Machine-Learning Methods for Estimating Surface Shortwave and Photosynthetically Active Radiation(MDPI, 2020-01-23) Brown, Meredith G. L.; Skakun, Sergii; He, Tao; Liang, ShunlinSatellite-derived estimates of downward surface shortwave radiation (SSR) and photosynthetically active radiation (PAR) are a part of the surface radiation budget, an essential climate variable (ECV) required by climate and vegetation models. Ground measurements are insufficient for generating long-term, global measurements of surface radiation, primarily due to spatial limitations; however, remotely sensed Earth observations offer freely available, multi-day, global coverage of radiance that can be used to derive SSR and PAR estimates. Satellite-derived SSR and PAR estimates are generated by computing the radiative transfer inversion of top-of-atmosphere (TOA) measurements, and require ancillary data on the atmospheric condition. To reduce computational costs, often the radiative transfer calculations are done offline and large look-up tables (LUTs) are generated to derive estimates more quickly. Recently studies have begun exploring the use of machine-learning techniques, such as neural networks, to try to improve computational efficiency. Here, nine machine-learning methods were tested to model SSR and PAR using minimal input data from the Moderate Resolution Imaging Spectrometer (MODIS) observations at 1 km spatial resolution. The aim was to reduce the input data requirements to create the most robust model possible. The bootstrap aggregated decision tree (Bagged Tree), Gaussian Process Regression, and Neural Network yielded the best results with minimal training data requirements: an 𝑅2 of 0.77, 0.78, and 0.78 respectively, a bias of 0 ± 6, 0 ± 6, and 0 ± 5 W/m2, and an RMSE of 140 ± 7, 135 ± 8, and 138 ± 7 W/m2, respectively, for all-sky condition total surface shortwave radiation and viewing angles less than 55°. Viewing angles above 55° were excluded because the residual analysis showed exponential error growth above 55°. A simple, robust model for estimating SSR and PAR using machine-learning methods is useful for a variety of climate system studies. Future studies may focus on developing high temporal resolution direct and diffuse estimates of SSR and PAR as most current models estimate only total SSR or PAR.Item ESTIMATING LAND SURFACE ALBEDO FROM SATELLITE DATA(2012) He, Tao; Liang, Shunlin; Geography; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Land surface albedo, defined as the ratio of the surface reflected incoming and outgoing solar radiation, is one of the key geophysical variables controlling the surface radiation budget. Surface shortwave albedo is widely used to drive climate and hydrological models. During the last several decades, remotely sensed surface albedo products have been generated through satellite-acquired data. However, some problems exist in those products due to instrument measurement inaccuracies and the failure of current retrieving procedures, which have limited their applications. More significantly, it has been reported that some albedo products from different satellite sensors do not agree with each other and some even show the opposite long term trend regionally and globally. The emergence of some advanced sensors newly launched or planned in the near future will provide better capabilities for estimating land surface albedo with fine resolution spatially and/or temporally. Traditional methods for estimating the surface shortwave albedo from satellite data include three steps: first, the satellite observations are converted to surface directional reflectance using the atmospheric correction algorithms; second, the surface bidirectional reflectance distribution function (BRDF) models are inverted through the fitting of the surface reflectance composites; finally, the shortwave albedo is calculated from the BRDF through the angular and spectral integration. However, some problems exist in these algorithms, including: 1) "dark-object" based atmospheric correction methods which make it difficult to estimate albedo accurately over non-vegetated or sparsely vegetated area; 2) the long-time composite albedo products cannot satisfy the needs of weather forecasting or land surface modeling when rapid changes such as snow fall/melt, forest fire/clear-cut and crop harvesting occur; 3) the diurnal albedo signature cannot be estimated in the current algorithms due to the Lambertian approximation in some of the atmospheric correction algorithms; 4) prior knowledge has not been effectively incorporated in the current algorithms; and 5) current observation accumulation methods make it difficult to obtain sufficient observations when persistent clouds exist within the accumulation window. To address those issues and to improve the satellite surface albedo estimations, a method using an atmospheric radiative transfer procedure with surface bidirectional reflectance modeling will be applied to simultaneously retrieve land surface albedo and instantaneous aerosol optical depth (AOD). This study consists of three major components. The first focuses on the atmospheric radiative transfer procedure with surface reflectance modeling. Instead of executing atmospheric correction first and then fitting surface reflectance in the previous satellite albedo retrieving procedure, the atmospheric properties (e.g., AOD) and surface properties (e.g., BRDF) are estimated simultaneously to reduce the uncertainties produced in separating the entire radiative transfer process. Data from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Terra and Aqua are used to evaluate the performance of this albedo estimation algorithm. Good agreement is reached between the albedo estimates from the proposed algorithm and other validation datasets. The second part is to assess the effectiveness of the proposed algorithm, analyze the error sources, and further apply the algorithm on geostationary satellite - the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) onboard Meteosat Second Generation (MSG). Extensive validations on surface albedo estimations from MSG/SEVIRI observations are conducted based on the comparison with ground measurements and other satellite products. Diurnal changes and day-to-day changes in surface albedo are accurately captured by the proposed algorithm. The third part of this study is to develop a spatially and temporally complete, continuous, and consistent albedo maps through a data fusion method. Since the prior information (or climatology) of albedo/BRDF plays a vital role in controlling the retrieving accuracy in the optimization method, currently available multiple land surface albedo products will be integrated using the Multi-resolution Tree (MRT) models to mitigate problems such as data gaps, systematic bias or low information-noise ratio due to instrument failure, persistent clouds from the viewing direction and algorithm limitations. The major original contributions of this study are as follows: 1) this is the first algorithm for the simultaneous estimations of surface albedo/reflectance and instantaneous AOD by using the atmospheric radiative transfer with surface BRDF modeling for both polar-orbiting and geostationary satellite data; 2) a radiative transfer with surface BRDF models is used to derive surface albedo and directional reflectance from MODIS and SEVIRI observations respectively; 3) extensive validations are made on the comparison between the albedo and AOD retrievals, and the satellite products from other sensors; 4) the slightly modified algorithm has been adopted to be the operational algorithm of Advanced Baseline Imager (ABI) in the future Geostationary Operational Environmental Satellite-R Series (GOES-R) program for estimating land surface albedo; 5) a framework of using MRT is designed to integrate multiple satellite albedo products at different spatial scales to build the spatially and temporally complete, continuous, and consistent albedo maps as the prior knowledge in the retrieving procedure.