Geography

Permanent URI for this communityhttp://hdl.handle.net/1903/2242

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    Lidar-Imagery Fusion Reveals Rapid Coastal Forest Loss in Delaware Bay Consistent with Marsh Migration
    (MDPI, 2022-09-13) Powell, Elisabeth B.; St. Laurent, Kari A.; Dubayah, Ralph
    Tidal wetland ecosystems and their vegetation communities are broadly controlled by tidal range and inundation frequency. Sea-level rise combined with episodic flooding events are causing shifts in thresholds of vegetation species which reconstructs the plant zonation of the coastal landscape. More frequent inundation events in the upland forest are causing the forest to convert into tidal marshes, and what is left behind are swaths of dead-standing trees along the marsh–forest boundary. Upland forest dieback has been well documented in the mid-Atlantic; however, reliable methods to accurately identify this dieback over large scales are still being developed. Here, we use multitemporal Lidar and imagery from the National Agricultural Imagery Program to classify areas of forest loss in the coastal regions of Delaware. We found that 1197 ± 405 hectares of forest transitioned to non-forest over nine years, and these losses were likely driven by major coastal storms and severe drought during the study period. In addition, we report decreases in Lidar-derived canopy height in forest loss areas, suggesting forest structure changes associated with the conversion from forest to marsh. Our results highlight the potential value of integrating Lidar-derived metrics to determine specific forest characteristics that may help predict future marsh migration pathways.
  • Thumbnail Image
    Item
    Local discrepancies in continental scale biomass maps: a case study over forested and non-forested landscapes in Maryland, USA
    (Springer Nature, 2015-08-16) Huang, Wenli; Swatantran, Anu; Johnson, Kristofer; Duncanson, Laura; Tang, Hao; O’Neil Dunne, Jarlath; Hurtt, George; Dubayah, Ralph
    Continental-scale aboveground biomass maps are increasingly available, but their estimates vary widely, particularly at high resolution. A comprehensive understanding of map discrepancies is required to improve their effectiveness in carbon accounting and local decision-making. To this end, we compare four continental-scale maps with a recent high-resolution lidar-derived biomass map over Maryland, USA. We conduct detailed comparisons at pixel-, county-, and state-level. Spatial patterns of biomass are broadly consistent in all maps, but there are large differences at fine scales (RMSD 48.5–92.7 Mg ha−1). Discrepancies reduce with aggregation and the agreement among products improves at the county level. However, continental scale maps exhibit residual negative biases in mean (33.0–54.6 Mg ha−1) and total biomass (3.5–5.8 Tg) when compared to the high-resolution lidar biomass map. Three of the four continental scale maps reach near-perfect agreement at ~4 km and onward but do not converge with the high-resolution biomass map even at county scale. At the State level, these maps underestimate biomass by 30–80 Tg in forested and 40–50 Tg in non-forested areas. Local discrepancies in continental scale biomass maps are caused by factors including data inputs, modeling approaches, forest/non-forest definitions and time lags. There is a net underestimation over high biomass forests and non-forested areas that could impact carbon accounting at all levels. Local, high-resolution lidar-derived biomass maps provide a valuable bottom-up reference to improve the analysis and interpretation of large-scale maps produced in carbon monitoring systems.
  • Thumbnail Image
    Item
    Implications of allometric model selection for county-level biomass mapping
    (Springer Nature, 2017-10-18) Duncanson, Laura; Huang, Wenli; Johnson, Kristofer; Swatantran, Anu; McRoberts, Ronald E.; Dubayah, Ralph
    Carbon accounting in forests remains a large area of uncertainty in the global carbon cycle. Forest aboveground biomass is therefore an attribute of great interest for the forest management community, but the accuracy of aboveground biomass maps depends on the accuracy of the underlying field estimates used to calibrate models. These field estimates depend on the application of allometric models, which often have unknown and unreported uncertainties outside of the size class or environment in which they were developed. Here, we test three popular allometric approaches to field biomass estimation, and explore the implications of allometric model selection for county-level biomass mapping in Sonoma County, California. We test three allometric models: Jenkins et al. (For Sci 49(1): 12–35, 2003), Chojnacky et al. (Forestry 87(1): 129–151, 2014) and the US Forest Service’s Component Ratio Method (CRM). We found that Jenkins and Chojnacky models perform comparably, but that at both a field plot level and a total county level there was a ~ 20% difference between these estimates and the CRM estimates. Further, we show that discrepancies are greater in high biomass areas with high canopy covers and relatively moderate heights (25–45 m). The CRM models, although on average ~ 20% lower than Jenkins and Chojnacky, produce higher estimates in the tallest forests samples (> 60 m), while Jenkins generally produces higher estimates of biomass in forests < 50 m tall. Discrepancies do not continually increase with increasing forest height, suggesting that inclusion of height in allometric models is not primarily driving discrepancies. Models developed using all three allometric models underestimate high biomass and overestimate low biomass, as expected with random forest biomass modeling. However, these deviations were generally larger using the Jenkins and Chojnacky allometries, suggesting that the CRM approach may be more appropriate for biomass mapping with lidar. These results confirm that allometric model selection considerably impacts biomass maps and estimates, and that allometric model errors remain poorly understood. Our findings that allometric model discrepancies are not explained by lidar heights suggests that allometric model form does not drive these discrepancies. A better understanding of the sources of allometric model errors, particularly in high biomass systems, is essential for improved forest biomass mapping.