Geography
Permanent URI for this communityhttp://hdl.handle.net/1903/2242
Browse
2 results
Search Results
Item Atmospheric Correction of Landsat ETM+ Land Surface Imagery: II. Validation and Applications(Institute of Electrical and Electronics Engineers, 2002) Liang, Shunlin; Morisette, Jeffrey T.; Fang, Hongliang; Chen, Mingzhen; Shuey, Chad J.; Daughtry, Craig S. T.; Walthall, Charles L.This is the second paper of the series on atmospheric correction of ETM+ land surface imagery. In the first paper, a new algorithm that corrects heterogeneous aerosol scattering and surface adjacency effects was presented. In this study, our objectives are to 1) evaluate the accuracy of this new atmospheric correction algorithm using ground radiometric measurements; 2) apply this algorithm to correct MODIS and SeaWiFS imagery; and 3) demonstrate how much atmospheric correction of ETM+ imagery can improve land cover classification, change detection, and broadband albedo calculations. Validation results indicate that this new algorithm can retrieve surface reflectance from ETM+ imagery accurately. All experimental cases demonstrate that this algorithm can be used for correcting both MODIS and SeaWiFS imagery. Although more tests and validation exercises are needed, it has been proven promising to correct different multispectral imagery operationally. We have also demonstrated that atmospheric correction does matter.Item Estimation and Validation of Land Surface Broadband Albedos and Leaf Area Index From EO-1 ALI Data(Institute of Electrical and Electronics Engineers, 2003-06) Liang, Shunlin; Fang, Hongliang; Kaul, Monisha; Van Niel, Tom G.; McVicar, Tim R.; Pearlman, Jay S.; Huemmrich, Karl Fred; Walthall, Charles L.; Daughtry, Craig S. T.The Advanced Land Imager (ALI) is a multispectral sensor onboard the National Aeronautics and Space Administration Earth Observing 1 (EO-1) satellite. It has similar spatial resolution to Landsat-7 Enhanced Thematic Mapper Plus (ETM+), with three additional spectral bands. We developed new algorithms for estimating both land surface broadband albedo and leaf area index (LAI) from ALI data. A recently developed atmospheric correction algorithm for ETM+ imagery was extended to retrieve surface spectral reflectance from ALI top-of-atmosphere observations. A feature common to these algorithms is the use of new multispectral information from ALI. The additional blue band of ALI is very useful in our atmospheric correction algorithm, and two additional ALI near-infrared bands are valuable for estimating both broadband albedo and LAI. Ground measurements at Beltsville, MD, and Coleambally, Australia, were used to validate the products generated by these algorithms.