Geography

Permanent URI for this communityhttp://hdl.handle.net/1903/2242

Browse

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    Item
    Remote Sensing of Coconut Trees in Tonga Using Very High Spatial Resolution WorldView-3 Data
    (MDPI, 2020-09-23) Vermote, Eric F.; Skakun, Sergii; Becker-Reshef, Inbal; Saito, Keiko
    This paper presents a simple and efficient image processing method for estimating the number of coconut trees in the Tonga region using very high spatial resolution data (30 cm) in the blue, green, red and near infrared spectral bands acquired by the WorldView-3 sensor. The method is based on the detection of tree shadows and the further analysis to reject false detection using geometrical properties of the derived segments. The algorithm is evaluated by comparing coconut tree counts derived by an expert through photo-interpretation over 57 randomly distributed (4% sampling rate) segments of 200 m × 200 m over the Vaini region of the Tongatapu island. The number of detected trees agreed within 5% versus validation data. The proposed method was also evaluated over the whole Tonga archipelago by comparing satellite-derived estimates to the 2015 agricultural census data—the total tree counts for both Tonga and Tongatapu agreed within 3%.
  • Thumbnail Image
    Item
    Evaluating the Impact of the 2020 Iowa Derecho on Corn and Soybean Fields Using Synthetic Aperture Radar
    (MDPI, 2020-11-26) Hosseini, Mehdi; Kerner, Hannah R.; Sahajpal, Ritvik; Puricelli, Estefania; Lu, Yu-Hsiang; Lawal, Afolarin Fahd; Humber, Michael L.; Mitkish, Mary; Meyer, Seth; Becker-Reshef, Inbal
    On 10 August 2020, a series of intense and fast-moving windstorms known as a derecho caused widespread damage across Iowa’s (the top US corn-producing state) agricultural regions. This severe weather event bent and flattened crops over approximately one-third of the state. Immediate evaluation of the disaster’s impact on agricultural lands, including maps of crop damage, was critical to enabling a rapid response by government agencies, insurance companies, and the agricultural supply chain. Given the very large area impacted by the disaster, satellite imagery stands out as the most efficient means of estimating the disaster impact. In this study, we used time-series of Sentinel-1 data to detect the impacted fields. We developed an in-season crop type map using Harmonized Landsat and Sentinel-2 data to assess the impact on important commodity crops. We intersected a SAR-based damage map with an in-season crop type map to create damaged area maps for corn and soybean fields. In total, we identified 2.59 million acres as damaged by the derecho, consisting of 1.99 million acres of corn and 0.6 million acres of soybean fields. Also, we categorized the impacted fields to three classes of mild impacts, medium impacts and high impacts. In total, 1.087 million acres of corn and 0.206 million acres of soybean were categorized as high impacted fields.
  • Thumbnail Image
    Item
    A Comparison between Support Vector Machine and Water Cloud Model for Estimating Crop Leaf Area Index
    (MDPI, 2021-04-01) Hosseini, Mehdi; McNairn, Heather; Mitchell, Scott; Robertson, Lauren Dingle; Davidson, Andrew; Ahmadian, Nima; Bhattacharya, Avik; Borg, Erik; Conrad, Christopher; Dabrowska-Zielinska, Katarzyna; de Abelleyra, Diego; Gurdak, Radoslaw; Kumar, Vineet; Kussul, Nataliia; Mandal, Dipankar; Rao, Y. S.; Saliendra, Nicanor; Shelestov, Andrii; Spengler, Daniel; Verón, Santiago R.; Homayouni, Saeid; Becker-Reshef, Inbal
    The water cloud model (WCM) can be inverted to estimate leaf area index (LAI) using the intensity of backscatter from synthetic aperture radar (SAR) sensors. Published studies have demonstrated that the WCM can accurately estimate LAI if the model is effectively calibrated. However, calibration of this model requires access to field measures of LAI as well as soil moisture. In contrast, machine learning (ML) algorithms can be trained to estimate LAI from satellite data, even if field moisture measures are not available. In this study, a support vector machine (SVM) was trained to estimate the LAI for corn, soybeans, rice, and wheat crops. These results were compared to LAI estimates from the WCM. To complete this comparison, in situ and satellite data were collected from seven Joint Experiment for Crop Assessment and Monitoring (JECAM) sites located in Argentina, Canada, Germany, India, Poland, Ukraine and the United States of America (U.S.A.). The models used C-Band backscatter intensity for two polarizations (like-polarization (VV) and cross-polarization (VH)) acquired by the RADARSAT-2 and Sentinel-1 SAR satellites. Both the WCM and SVM models performed well in estimating the LAI of corn. For the SVM, the correlation (R) between estimated LAI for corn and LAI measured in situ was reported as 0.93, with a root mean square error (RMSE) of 0.64 m2m−2 and mean absolute error (MAE) of 0.51 m2m−2 . The WCM produced an R-value of 0.89, with only slightly higher errors (RMSE of 0.75 m2m−2 and MAE of 0.61 m2m−2 ) when estimating corn LAI. For rice, only the SVM model was tested, given the lack of soil moisture measures for this crop. In this case, both high correlations and low errors were observed in estimating the LAI of rice using SVM (R of 0.96, RMSE of 0.41 m2m−2 and MAE of 0.30 m2m−2 ). However, the results demonstrated that when the calibration points were limited (in this case for soybeans), the WCM outperformed the SVM model. This study demonstrates the importance of testing different modeling approaches over diverse agro-ecosystems to increase confidence in model performance.
  • Thumbnail Image
    Item
    Mapping the Location and Extent of 2019 Prevent Planting Acres in South Dakota Using Remote Sensing Techniques
    (MDPI, 2021-06-22) Lawal, Afolarin; Kerner, Hannah; Becker-Reshef, Inbal; Meyer, Seth
    The inability of a farmer to plant an insured crop by the policy’s final planting date can pose financial challenges for the grower and cause reduced production for a widely impacted region. Prevented planting is primarily caused by excess moisture or rainfall such as the catastrophic flooding and widespread conditions that prevented active field work in the midwestern region of United States in 2019. While the Farm Service Agency reports the number of such “prevent plant” acres each year at the county scale, field-scale maps of prevent plant fields—which would enable analyses related to assessing and mitigating the impact of climate on agriculture—are not currently available. The aim of this study is to demonstrate a method for mapping likely prevent plant fields based on flood mapping and historical cropland maps. We focused on a study region in eastern South Dakota and created flood maps using Landsat 8 and Sentinel 1 images from 2018 and 2019. We used automatic threshold-based change detection using NDVI and NDWI to accentuate changes likely caused by flooding. The NDVI change detection map showed vegetation loss in the eastern parts of the study area while NDWI values showed increased water content, both indicating possible flooding events. The VH polarization of Sentinel 1 was also particularly useful in identifying potential flooded areas as the VH values for 2019 were substantially lower than those of 2018, especially in the northern part of the study area, likely indicating standing water or reduced biomass. We combined the flood maps from Landsat 8 and Sentinel 1 to form a complete flood likelihood map over the entire study area. We intersected this flood map with a map of fallow pixels extracted from the Cropland Data Layer to produce a map of predicted prevent plant acres across several counties in South Dakota. The predicted figures were within 10% error of Farm Service Agency reports, with low errors in the most affected counties in the state such as Beadle, Hanson, and Hand.