Kinesiology

Permanent URI for this communityhttp://hdl.handle.net/1903/2253

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Arterial function in response to a 50 km ultramarathon in recreational athletes
    (Wiley, 2024-06-11) Ranadive, Sushant M.; Weiner, Cynthia M.; Eagan, Lauren E.; Addison, Odessa; Landers-Ramos, Rian Q.; Prior, Steven J.
    This study was performed to determine whether prolonged endurance running results in acute endothelial dysfunction and wave-reflection, as endothelial dysfunction and arterial stiffness are cardiovascular risk factors. Vascular function (conduit artery/macrovascular and resistance artery/microvascular) was assessed in 11 experienced runners (8 males, 3 females) before, during and after a 50 km ultramarathon. Blood pressure (BP), heart rate (HR), wave reflection, augmentation index (AIx) and AIx corrected for HR (AIx75) were taken at all time points—Baseline (BL), following 10, 20, 30 and 40 km, 1 h post-completion (1HP) and 24 h post-completion (24HP). Flow-mediated dilatation (FMD) and inflammatory biomarkers were examined at BL, 1HP and 24HP. Reactive hyperaemia area under the curve (AUC) and shear rate AUC to peak dilatation were lower (∼75%) at 1HP compared with BL (P < 0.001 for both) and reactive hyperaemia was higher at 24HP (∼27%) compared with BL (P = 0.018). Compared to BL, both mean central systolic BP and mean central diastolic BP were 7% and 10% higher, respectively, following 10 km and 6% and 9% higher, respectively, following 20 km, and then decreased by 5% and 8%, respectively, at 24HP (P < 0.05 for all). AIx (%) decreased following 20 km and following 40 km compared with BL (P < 0.05 for both) but increased following 40 km when corrected for HR (AIx75) compared with BL (P = 0.02). Forward wave amplitude significantly increased at 10 km (15%) compared with BL (P = 0.049), whereas backward wave reflection and reflected magnitude were similar at all time points. FMD and baseline diameter remained similar. These data indicate preservation of macrovascular (endothelial) function, but not microvascular function resulting from the 50 km ultramarathon.
  • Item
    Arterial stiffness and blood pressure are similar in naturally menstruating and oral contraceptive pill-using women during the higher hormone phases
    (Wiley, 2022-02-24) Eagan, Lauren E.; Chesney, Catalina A.; Mascone, Sara E.; Ranadive, Sushant M.
    New Findings What is the central question of this study? Are there differences in blood pressure, arterial stiffness and indices of pressure waveforms between young oral contraceptive pill-using and naturally menstruating women during lower and higher hormone phases of their cycles? What is the main finding and its importance? Blood pressure, arterial stiffness and indices of pressure waveforms are influenced similarly by exogenous and endogenous hormones. However, lower levels of exogenous hormones moderately increase blood pressure among oral contraceptive pill-using women. Elevations in blood pressure (BP) are understood as having a bidirectional relationship with stiffening of central and peripheral arteries. Arterial stiffness is mitigated by oestrogen, which aides in arterial vasorelaxation. To evaluate whether BP, stiffness, and pressure waveforms were different between young healthy naturally menstruating (non-OCP) and oral contraceptive pill (OCP)-using women, we measured brachial and aortic BPs, carotid-to-femoral pulse wave velocity, carotid β-stiffness, elastic modulus, central augmentation index and augmentation index normalized to a heart rate of 75 bpm, and forward and backward pressure waveforms in 22 women (22 (1) years, OCP: n = 12). To assess phasic differences, women were studied during the early follicular (≤5 days of menstruation onset) and early luteal (4 (2) days post-ovulation) phases of non-OCP and compared to the placebo pill (≤5 days of onset) and active pill (≤5 days of highest-dose active pill) phases of OCP. During the lower hormone phases, OCP users had significantly higher brachial systolic blood pressure (SBP) (119.3 (8.3) vs. 110.2 (8.3) mmHg, P = 0.02) and aortic SBP (104.10 (7.44) vs. 96.80 (6.39) mmHg, P = 0.03) as compared to non-OCP users; however, during the higher hormone phases, there were no differences in measures of brachial or aortic BP, arterial stiffness, or indices of BP waveforms between OCP and non-OCP users (P ≥ 0.05). In conclusion, exogenous and endogenous hormones have similar influences on BP and arterial stiffness; however, lower levels of exogenous hormones augment both central and peripheral BPs.