College of Behavioral & Social Sciences

Permanent URI for this communityhttp://hdl.handle.net/1903/8

The collections in this community comprise faculty research works, as well as graduate theses and dissertations..

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Integrating forest inventory and analysis data into a LIDAR-based carbon monitoring system
    (Springer Nature, 2014-05-08) Johnson, Kristofer D; Birdsey, Richard; Finley, Andrew O; Swantaran, Anu; Dubayah, Ralph; Wayson, Craig; Riemann, Rachel
    Forest Inventory and Analysis (FIA) data may be a valuable component of a LIDAR-based carbon monitoring system, but integration of the two observation systems is not without challenges. To explore integration methods, two wall-to-wall LIDAR-derived biomass maps were compared to FIA data at both the plot and county levels in Anne Arundel and Howard Counties in Maryland. Allometric model-related errors were also considered. In areas of medium to dense biomass, the FIA data were valuable for evaluating map accuracy by comparing plot biomass to pixel values. However, at plots that were defined as “nonforest”, FIA plots had limited value because tree data was not collected even though trees may be present. When the FIA data were combined with a previous inventory that included sampling of nonforest plots, 21 to 27% of the total biomass of all trees was accounted for in nonforest conditions, resulting in a more accurate benchmark for comparing to total biomass derived from the LIDAR maps. Allometric model error was relatively small, but there was as much as 31% difference in mean biomass based on local diameter-based equations compared to regional volume-based equations, suggesting that the choice of allometric model is important. To be successfully integrated with LIDAR, FIA sampling would need to be enhanced to include measurements of all trees in a landscape, not just those on land defined as “forest”. Improved GPS accuracy of plot locations, intensifying data collection in small areas with few FIA plots, and other enhancements are also recommended.
  • Thumbnail Image
    Item
    ASSESSING FOREST BIOMASS AND MONITORING CHANGES FROM DISTURBANCE AND RECOVERY WITH LIDAR AND SAR
    (2015) Huang, Wenli; Dubayah, Ralph; Sun, Guoqing; Geography; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    This dissertation research investigated LiDAR and SAR remote sensing for assessing aboveground biomass and monitoring changes from anthropogenic forest disturbance and post-disturbance recovery. First, waveform LiDAR data were applied to map forest biomass and its changes at different key map scales for the two study sites: Howland Forest and Penobscot Experimental Forest. Results indicated that the prediction model at the scale of individual LVIS footprints is reliable when the geolocation errors are minimized. The evaluation showed that the predictions were improved markedly (20% R2 and 10% RMSE) with the increase of plot sizes from 0.25 ha to 1.0 ha. The effect of disturbance on the prediction model was strong at the footprint level but weak at the 1.0 ha plot-level. Errors reached minimum when footprint coverage approached about 50% of the area of 1.0 ha plots (16 footprints) with no improvement beyond that. Then, a sensitivity analysis was conducted for multi-source L-band SAR signatures, to change in forest biomass and related factors such as incidence angle, soil moisture, and disturbance type. The effect of incidence angle on SAR backscatter was reduced by an empirical model. A cross-image normalization was used to reduce the radiometric distortions due to changes in acquisition conditions such as soil moisture. Results demonstrated that the normalization ensured that the derived biomass of regrowth forests was cross-calibrated, and thus made the detection of biomass change possible. Further, the forest biomass was mapped for 1989, 1994 and 2009 using multi-source SAR data, and changes in biomass were derived for a 15- and a 20-year period. Results improved our understanding of issues concerning the mapping of biomass dynamic using L-ban SAR data. With the increase of plot sizes, the speckle noise and geolocations errors were reduced. Multivariable models were found to outperform the single-term models developed for biomass estimation. The main contribution of this research was an improved knowledge concerning waveform LiDAR and L-band SAR’s ability in monitoring the changes in biomass in a temperate forest. Results from this study provide calibration and validation methods as a foundation for improving the performance of current and future spaceborne systems.