College of Behavioral & Social Sciences

Permanent URI for this communityhttp://hdl.handle.net/1903/8

The collections in this community comprise faculty research works, as well as graduate theses and dissertations..

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Evaluating the Impact of the 2020 Iowa Derecho on Corn and Soybean Fields Using Synthetic Aperture Radar
    (MDPI, 2020-11-26) Hosseini, Mehdi; Kerner, Hannah R.; Sahajpal, Ritvik; Puricelli, Estefania; Lu, Yu-Hsiang; Lawal, Afolarin Fahd; Humber, Michael L.; Mitkish, Mary; Meyer, Seth; Becker-Reshef, Inbal
    On 10 August 2020, a series of intense and fast-moving windstorms known as a derecho caused widespread damage across Iowa’s (the top US corn-producing state) agricultural regions. This severe weather event bent and flattened crops over approximately one-third of the state. Immediate evaluation of the disaster’s impact on agricultural lands, including maps of crop damage, was critical to enabling a rapid response by government agencies, insurance companies, and the agricultural supply chain. Given the very large area impacted by the disaster, satellite imagery stands out as the most efficient means of estimating the disaster impact. In this study, we used time-series of Sentinel-1 data to detect the impacted fields. We developed an in-season crop type map using Harmonized Landsat and Sentinel-2 data to assess the impact on important commodity crops. We intersected a SAR-based damage map with an in-season crop type map to create damaged area maps for corn and soybean fields. In total, we identified 2.59 million acres as damaged by the derecho, consisting of 1.99 million acres of corn and 0.6 million acres of soybean fields. Also, we categorized the impacted fields to three classes of mild impacts, medium impacts and high impacts. In total, 1.087 million acres of corn and 0.206 million acres of soybean were categorized as high impacted fields.
  • Thumbnail Image
    Item
    A Comparison between Support Vector Machine and Water Cloud Model for Estimating Crop Leaf Area Index
    (MDPI, 2021-04-01) Hosseini, Mehdi; McNairn, Heather; Mitchell, Scott; Robertson, Lauren Dingle; Davidson, Andrew; Ahmadian, Nima; Bhattacharya, Avik; Borg, Erik; Conrad, Christopher; Dabrowska-Zielinska, Katarzyna; de Abelleyra, Diego; Gurdak, Radoslaw; Kumar, Vineet; Kussul, Nataliia; Mandal, Dipankar; Rao, Y. S.; Saliendra, Nicanor; Shelestov, Andrii; Spengler, Daniel; Verón, Santiago R.; Homayouni, Saeid; Becker-Reshef, Inbal
    The water cloud model (WCM) can be inverted to estimate leaf area index (LAI) using the intensity of backscatter from synthetic aperture radar (SAR) sensors. Published studies have demonstrated that the WCM can accurately estimate LAI if the model is effectively calibrated. However, calibration of this model requires access to field measures of LAI as well as soil moisture. In contrast, machine learning (ML) algorithms can be trained to estimate LAI from satellite data, even if field moisture measures are not available. In this study, a support vector machine (SVM) was trained to estimate the LAI for corn, soybeans, rice, and wheat crops. These results were compared to LAI estimates from the WCM. To complete this comparison, in situ and satellite data were collected from seven Joint Experiment for Crop Assessment and Monitoring (JECAM) sites located in Argentina, Canada, Germany, India, Poland, Ukraine and the United States of America (U.S.A.). The models used C-Band backscatter intensity for two polarizations (like-polarization (VV) and cross-polarization (VH)) acquired by the RADARSAT-2 and Sentinel-1 SAR satellites. Both the WCM and SVM models performed well in estimating the LAI of corn. For the SVM, the correlation (R) between estimated LAI for corn and LAI measured in situ was reported as 0.93, with a root mean square error (RMSE) of 0.64 m2m−2 and mean absolute error (MAE) of 0.51 m2m−2 . The WCM produced an R-value of 0.89, with only slightly higher errors (RMSE of 0.75 m2m−2 and MAE of 0.61 m2m−2 ) when estimating corn LAI. For rice, only the SVM model was tested, given the lack of soil moisture measures for this crop. In this case, both high correlations and low errors were observed in estimating the LAI of rice using SVM (R of 0.96, RMSE of 0.41 m2m−2 and MAE of 0.30 m2m−2 ). However, the results demonstrated that when the calibration points were limited (in this case for soybeans), the WCM outperformed the SVM model. This study demonstrates the importance of testing different modeling approaches over diverse agro-ecosystems to increase confidence in model performance.