College of Behavioral & Social Sciences

Permanent URI for this communityhttp://hdl.handle.net/1903/8

The collections in this community comprise faculty research works, as well as graduate theses and dissertations..

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Validation of Land Cover Maps in China Using a Sampling-Based Labeling Approach
    (MDPI, 2015-08-18) Bai, Yan; Feng, Min; Jiang, Hao; Wang, Juanle; Liu, Yingzhen
    This paper presents a rigorous validation of five widely used global land cover products, i.e., GLCC (Global Land Cover Characterization), UMd (University of Maryland land cover product), GLC2000 (Global Land Cover 2000 project data), MODIS LC (Moderate Resolution Imaging Spectro-radiometer Land Cover product) and GlobCover (GLOBCOVER land cover product), and a national land cover map GLCD-2005 (Geodata Land Cover Dataset for year 2005) against an independent reference data set over China. The land cover reference data sets in three epochs (1990, 2000, and 2005) were collected on a web-based prototype system using a sampling-based labeling approach. Results show that, in China, the highest overall accuracy is observed in GLCD-2005 (72.3%), followed by MODIS LC (68.9%), GLC2000 (65.2%), GlobCover (57.7%) and GLCC (57.2%), while UMd has the lowest accuracy (48.6%); all of the products performed best in representing “Trees” and “Others”, well with “Grassland” and “Cropland”, but problematic with “Water” and “Urban” across China in general. Moreover, in respect of GLCD-2005, there are significant accuracy differences across seven geographical locations of China, ranging from 46.3% in the Southwest, 77.5% in the South, 79.2% in the Northwest, 80.8% in the North, 81.8% in the Northeast, 82.6% in the Central, to 89.0% in the East. This study indicates that a regionally focused land cover map would in fact be more accurate than extracting the same region from a globally produced map.
  • Thumbnail Image
    Item
    Assessment of MODIS BRDF/Albedo Model Parameters (MCD43A1 Collection 6) for Directional Reflectance Retrieval
    (MDPI, 2017-11-04) Che, Xianghong; Feng, Min; Sexton, Joseph O.; Channan, Saurabh; Yang, Yaping; Sun, Qing
    Measurements of solar radiation reflected from Earth’s surface are the basis for calculating albedo, vegetation indices, and other terrestrial attributes. However, the “bi-directional” geometry of illumination and viewing (i.e., the Bi-directional Reflectance Distribution Function (BRDF)) impacts reflectance and all variables derived or estimated based on these data. The recently released MODIS BRDF/Albedo Model Parameters (MCD43A1 Collection 6) dataset enables retrieval of directional reflectance at arbitrary solar and viewing angles, potentially increasing precision and comparability of data collected under different illumination and observation geometries. We quantified the ability of MCD43A1 Collection 6 for retrieving directional reflectance and compared the daily Collection 6 retrievals to those of MCD43A1 Collection 5, which are retrieved on an eight-day basis. Correcting MODIS-based estimates of surface reflectance from the illumination and viewing geometry of the Terra satellite (MOD09GA) to that of the MODIS Aqua (MYD09GA) overpass, as well as MCD43A4 Collection 6 and Landsat-5 TM images show that the BRDF correction of MCD43A1 Collection 6 results in greater consistency among datasets, with higher R2 (0.63–0.955), regression slopes closer to unity (0.718–0.955), lower root mean squared difference (RMSD) (0.422–3.142), and lower mean absolute error (MAE) (0.282–1.735) compared to the Collection 5 data. Smaller levels of noise (observed as high-frequency variability within the time series) in MCD43A1 Collection 6 in comparison to Collection 5 corroborates the improvement of BRDF parameters time series. These results corroborates that the daily MCD43A1 Collection 6 product represents the anisotropy of surface features and results in more precise directional reflectance derivation at any solar and viewing geometry than did the previous Collection 5.