Entomology
Permanent URI for this communityhttp://hdl.handle.net/1903/11813
Browse
3 results
Search Results
Item Metapopulation dynamics override local limits on long-term parasite persistence(2008-12) Ram, Karthik; Preisser, Evan; Gruner, Daniel; Strong, DonaldA simple null model, particularly germane to small and vulnerable organisms such as parasites, is that local conditions set a stage upon which larger-scale dynamics play out. Soil moisture strongly influences survival of entomopathogenic nematodes (EPN), which in turn drive trophic cascades by protecting vegetation from root-feeding herbivores. In this study, we examine the mechanisms responsible for patchy occurrence of an entomopathogenic nematode, Heterorhabditis marelatus, in a California coastal prairie. One hypothesis proposes that biotic factors such as competition and natural enemies could regulate occurrence of EPN populations. We found that fungi and other enemies of EPN, although locally potent, did not explain the patterns of incidence across sites. Abiotic factors also have strong effects on EPN persistence, especially for vulnerable free-living stages. Thus, we tested the hypothesis that patchy occurrence of EPN on a large landscape was driven by differences in soil moisture. Our research uses long-term data on nematode incidence in combination with a landscapelevel experiment to demonstrate the lack of a correlation between soil moisture and long-term persistence. A year-long experiment showed EPN mortality was weakly correlated with soil moisture among our study sites. Thirteen years of data, however, showed that colonization rates were highly correlated with long-term persistence. Sites with highest long-term persistence experienced the highest rates of rhizosphere colonization, extinction, and turnover. As a result, we concluded that metapopulation dynamics override limitations set by local and short-term abiotic conditions to determine long-term persistence in this parasite-driven trophic cascade.Item Dynamics of a subterranean trophic cascade in space and time(2008) Ram, Karthik; Gruner, Daniel; McLaughlin, John; Preisser, Evan; Strong, DonaldTrophic cascades, whereby predators indirectly benefit plant biomass by reducing herbivore pressure, form the mechanistic basis for classical biological control of pest insects. Entomopathogenic nematodes (EPN) are lethal to a variety of insect hosts with soil-dwelling stages, making them promising biocontrol agents. EPN biological control programs, however, typically fail because nematodes do not establish, persist and/or recycle over multiple host generations in the field. A variety of factors such as local abiotic conditions, host quantity and quality, and rates of movement affect the probability of persistence. Here, we review results from 13 years of study on the biology and ecology of an endemic population of Heterorhabditis marelatus (Rhabditida: Heterorhabditidae) in a California coastal prairie. In a highly seasonal abiotic environment with intrinsic variation in soils, vegetation structure, and host availability, natural populations of H. marelatus persisted at high incidence at some but not all sites within our study area. Through a set of field and lab experiments, we describe mechanisms and hypotheses to understand the persistence of H. marelatus. We suggest that further ecological study of naturally occurring EPN populations can yield significant insight to improve the practice and management of biological control of soil-dwelling insect pests.Item Soil mediates the interaction of coexisting entomopathogenic nematodes with an insect host(Journal of Invertebrate Pathology, 2007) Gruner, Daniel; Ram, Karthik; Strong, DonaldWe tested for soil substrate effects on the movement and infectivity of naturally co-occurring entomopathogenic nematodes Steinernema feltiae and Heterorhabditis marelatus, alone and in combination. We manipulated the presence and bulk density of soil and added Galleria mellonella baits within capped and perforated 15 mL centrifuge tubes. Sampling tubes were then deployed in situ into field and laboratory settings as experimental traps for infective juveniles. In comparisons with standard soil collections from Lupinus arboreus rhizospheres, sampling tubes were equally sensitive to the presence of H. marelatus and more sensitive to S. feltiae. In laboratory microcosms, both EPN species infected Galleria at high frequencies in tubes lacking soil and in the absence of heterospecifics. Infection frequency of S. feltiae was unaffected by the presence of H. marelatus, but it declined with higher soil bulk density inside tubes. In contrast, detectable infection frequency by H. marelatus was reduced only marginally by the presence of soil but severely by the presence of S. feltiae. Thus, the presence of soil in tubes reversed the identity of dominant species infecting Galleria in tubes, an effect magnified when soils were compacted. Moreover, S. feltiae rarely moved into tubes lacking Galleria baits, whereas H. marelatus colonized unbaited tubes 4- to 5-fold more frequently than S. feltiae. In situ, sampling tubes acted as filters to reduce interference and contamination by fungal pathogens common in field soils. The method allows precision sampling with minimal soil disturbance while protecting bait insects from scavengers. Manipulation of tube design may allow selective sampling of EPN species, depending on the abiotic characteristics of soils, and the biology, behavior, and interspecific interactions of coexisting species.