Entomology
Permanent URI for this communityhttp://hdl.handle.net/1903/11813
Browse
3 results
Search Results
Item Use of Molecular Gut Content Analysis to Decipher the Range of Food Plants of the Invasive Spotted Lanternfly, Lycorma delicatula(MDPI, 2020-04-01) Avanesyan, Alina; Lamp, William O.Spotted lanternfly, Lycorma delicatula (Hemiptera: Fulgoridae), is an introduced highly invasive insect pest in the US that poses a significant risk to forestry and agriculture. Assessing and predicting plant usage of the lanternfly has been challenging, and little is known regarding the lanternfly nymph association with its host plants. In this study, we focused on: (a) providing a protocol for using molecular markers for food plant identification of L. delicatula; (b) determining whether the ingested plant DNA corresponds with DNA of the plants from which the lanternfly was collected; and, (c) investigating the spectrum of ingested plants. We utilized gut contents of third and fourth instar nymphs that were collected from multiple plants; we isolated ingested plant DNA and identified consumed plants. We demonstrated that (a) up to 534 bp of the rbcL gene from ingested plants can be detected in L. delicatula guts, (b) ingested plants in ~93% of the nymphs did not correspond with the plants from which the nymphs were collected, and (c) both introduced and native plants, as well as woody and non-woody plants, were ingested. This information will aid effective the monitoring and management of the lanternfly, as well as predict the lanternfly host plants with range expansion.Item Diverse Host Plants of the First Instars of the Invasive Lycorma delicatula: Insights from eDNA Metabarcoding(MDPI, 2022-06-10) McPherson, Cameron; Avanesyan, Alina; Lamp, William O.Identification of host plants of the invasive spotted lanternfly, Lycorma delicatula (Hemiptera: Fulgoridae), has been the focus of many studies. While the adults and late nymphs are relatively easy to observe on plants and to use for molecular gut-content analysis, studying the early instars is more challenging. This study is the continuation of our ongoing efforts to determine the host range for each developmental stage of L. delicatula. In the present study, we focused exclusively on the first nymphal instars, and we used a novel approach, utilizing “bulk” DNA extracts for DNA metabarcoding of nymphal gut contents, to identify all the detectable plants that the nymphs had ingested prior to being collected. We were able to obtain high-quality amplicons (up to 406 bp) of a portion of the rbcL gene and detect 27 unique ingested plant species belonging to 17 families. Both native and introduced plants with the prevalence of trees and grasses were present among the ingested plants. We also identified 13 novel host plants that have not been previously reported for L. delicatula on the U.S. territory. The results from our study have important applications for developing effective programs on early monitoring of invasive L. delicatula.Item Analysis of Plant Trait Data of Host Plants of Lycorma delicatula in the US Suggests Evidence for Ecological Fitting(MDPI, 2022-11-29) Avanesyan, Alina; McPherson, Cameron; Lamp, William O.Plant traits, used by the invasive insect herbivores to find and select suitable hosts, can play an important role in insect host range expansion. With regard to invasive Lycorma delicatula, it is not well explored, however, how the plant origin affects insect host selection, and whether native and introduced host plants differ in their morphology, lifespan, as well as environmental requirements for growth. We addressed this issue in our study through the comprehensive assessment of 25 relevant plant traits (a total of 27,601 records retrieved from the TRY database), as well as the origin and phylogenetic relationships of 37 host plants of L. delicatula in the U.S. Our results showed that only leaf area, leaf chlorophyll content, and canopy size were significantly greater in the introduced hosts than that in native plants. We did not detect a significant effect of the plant origin on other characteristics. Additionally, no significant differences between native and introduced hosts of L. delicatula in genetic distances from introduced Ailanthus altissima (the most preferred host) were detected. These results, for the first time, suggest strong evidence for ecological fitting which might drive the host plant selection of L. delicatula and its rapid spread in the U.S.