Physics
Permanent URI for this communityhttp://hdl.handle.net/1903/2269
Browse
3 results
Search Results
Item A NEW HOPE: CAN WE PREDICT GEODYNAMO DYNAMICS?(2022) Perevalov, Artur; Lathrop, Daniel; Physics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)The Earth’s magnetic field is hugely important, as it protects the surface of the planet from cosmic radiation and charged particles coming from the Sun and enables navigation for many living species. However, how it is generated and why it changes its value and configuration in time is poorly understood. The leading theory for the generation of the Earth’s magnetic field is the geodynamo: an electrically conductive fluid in the Earth’s core creates and maintains a magnetic field over an astronomical time scale.To probe this theory experimentally, the Three Meter Experiment—a 3 meter diameter spherical-Couette apparatus—was built to model the Earth's core. The experiment consists of two rotating concentric spheres with liquid sodium between them. The rotating spheres generate fluid motion and reproduce the dynamics similar to those that occur in the planet's core. The previous generation of the experiment was not able to generate a self-sustaining magnetic field. However, numerical studies suggest that increasing the roughness of the liquid to the solid boundary should allow enable entering the dynamo regime. To test this, we first built a scaled-down model of the Three Meter sodium experiment. This was a 40-cm water experiment to examine the increase in helicity of the flow from installing baffles on the inner sphere. We then drained 12 tons of liquid sodium from the Three Meter experiment, cleaned, fixed, and upgraded it with baffles to increase surface roughness. We then re-filled the Three Meter experiment with sodium and performed several experiments. Here, we present the results of studying the torque scaling in the experiment. We show that the experiment's highest Reynolds number is limited by the maximum torque and power in the driving motors. We further investigate the magnetic data from various experiments and show that we are likely on the edge of the dynamo action. We present observation of traveling magneto-Coriolis modes and analyze their dynamics in different conditions. These structures are important for understanding some changes in celestial objects' magnetic fields and their mechanical properties. We also present a software tool developed to mimic the observed behavior of this magnetohydrodynamic experiment. This gives us a proper tool to predict the near future of dynamos, and allows us take a deeper look into its internal structure.Item Magnetic and Acoustic Investigations of Turbulent Spherical Couette Flow(2016) Adams, Matthew Michael; Lathrop, Daniel P; Physics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Title of dissertation: MAGNETIC AND ACOUSTIC INVESTIGATIONS OF TURBULENT SPHERICAL COUETTE FLOW Matthew M. Adams, Doctor of Philosophy, 2016 Dissertation directed by: Professor Daniel Lathrop Department of Physics This dissertation describes experiments in spherical Couette devices, using both gas and liquid sodium. The experimental geometry is motivated by the Earth's outer core, the seat of the geodynamo, and consists of an outer spherical shell and an inner sphere, both of which can be rotated independently to drive a shear flow in the fluid lying between them. In the case of experiments with liquid sodium, we apply DC axial magnetic fields, with a dominant dipole or quadrupole component, to the system. We measure the magnetic field induced by the flow of liquid sodium using an external array of Hall effect magnetic field probes, as well as two probes inserted into the fluid volume. This gives information about possible velocity patterns present, and we extend previous work categorizing flow states, noting further information that can be extracted from the induced field measurements. The limitations due to a lack of direct velocity measurements prompted us to work on developing the technique of using acoustic modes to measure zonal flows. Using gas as the working fluid in our 60~cm diameter spherical Couette experiment, we identified acoustic modes of the container, and obtained excellent agreement with theoretical predictions. For the case of uniform rotation of the system, we compared the acoustic mode frequency splittings with theoretical predictions for solid body flow, and obtained excellent agreement. This gave us confidence in extending this work to the case of differential rotation, with a turbulent flow state. Using the measured splittings for this case, our colleagues performed an inversion to infer the pattern of zonal velocities within the flow, the first such inversion in a rotating laboratory experiment. This technique holds promise for use in liquid sodium experiments, for which zonal flow measurements have historically been challenging.Item Problems in Spatiotemporal Chaos(2007-11-26) Cornick, Matthew Tyler; Ott, Edward; Physics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)In this thesis we consider two problem areas involving spatiotemporally chaotic systems. In Part I we investigate data assimilation techniques applicable to large systems. Data assimilation refers to the process of estimating a system's state from a time series of measurements (which may be noisy or incomplete) in conjunction with a model for the system's time evolution. However, for practical reasons, the high dimensionality of large spatiotemporally chaotic systems prevents the use of classical data assimilation techniques such as the Kalman filter. Here, a recently developed data assimilation method, the local ensemble transform Kalman Filter (LETKF), designed to circumvent this difficulty is applied to \RaBen convection, a prototypical spatiotemporally chaotic laboratory system. Using this technique we are able to extract the full temperature and velocity fields from a time series of shadowgraphs from a Rayleigh-Benard convection experiment. The process of estimating fluid parameters is also investigated. The presented results suggest the potential usefulness of the LETKF technique to a broad class of laboratory experiments in which there is spatiotemporally chaotic behavior. In Part II we study magnetic dynamo action in rotating electrically conducting fluids. In particular, we study how rotation effects the process of magnetic field growth (the dynamo effect) for a externally forced turbulent fluid. We solve the kinematic magnetohydrodynamic (MHD) equations with the addition of a Coriolis force in a periodic domain. Our results suggest that rotation is desirable for producing dynamo flows.