Physics
Permanent URI for this communityhttp://hdl.handle.net/1903/2269
Browse
2 results
Search Results
Item Experiments with Trapped Ions and Ultrafast Laser Pulses(2016) Johnson, Kale Gifford; Monroe, Christopher; Physics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Since the dawn of quantum information science, laser-cooled trapped atomic ions have been one of the most compelling systems for the physical realization of a quantum computer. By applying qubit state dependent forces to the ions, their collective motional modes can be used as a bus to realize entangling quantum gates. Ultrafast state-dependent kicks [1] can provide a universal set of quantum logic operations, in conjunction with ultrafast single qubit rotations [2], which uses only ultrafast laser pulses. This may present a clearer route to scaling a trapped ion processor [3]. In addition to the role that spin-dependent kicks (SDKs) play in quantum computation, their utility in fundamental quantum mechanics research is also apparent. In this thesis, we present a set of experiments which demonstrate some of the principle properties of SDKs including ion motion independence (we demonstrate single ion thermometry from the ground state to near room temperature and the largest Schrodinger cat state ever created in an oscillator), high speed operations (compared with conventional atom-laser interactions), and multi-qubit entanglement operations with speed that is not fundamentally limited by the trap oscillation frequency. We also present a method to provide higher stability in the radial mode ion oscillation frequencies of a linear radiofrequency (rf) Paul trap--a crucial factor when performing operations on the rf-sensitive modes. Finally, we present the highest atomic position sensitivity measurement of an isolated atom to date of ~0.5 nm Hz^(-1/2) with a minimum uncertainty of 1.7 nm using a 0.6 numerical aperature (NA) lens system, along with a method to correct aberrations and a direct position measurement of ion micromotion (the inherent oscillations of an ion trapped in an oscillating rf field). This development could be used to directly image atom motion in the quantum regime, along with sensing forces at the yoctonewton [10^(-24) N)] scale for gravity sensing, and 3D imaging of atoms from static to higher frequency motion. These ultrafast atomic qubit manipulation tools demonstrate inherent advantages over conventional techniques, offering a fundamentally distinct regime of control and speed not previously achievable.Item QUANTUM SIMULATIONS OF THE ISING MODEL WITH TRAPPED IONS: DEVIL'S STAIRCASE AND ARBITRARY LATTICE PROPOSAL(2013) Korenblit, Simcha; Monroe, Christopher; Physics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)A collection of trapped atomic ions represents one of the most attractive platforms for the quantum simulation of interacting spin networks and quantum magnetism. Spin-dependent optical dipole forces applied to an ion crystal create long-range eective spin-spin interactions and allow the simulation of spin Hamiltonians that possess nontrivial phases and dynamics. We trap linear chains of 171Yb+ ions in a Paul trap, and constrain the occupation of energy levels to the ground hyperne clock-states, creating a qubit or pseudo-spin 1/2 system. We proceed to implement spin-spin couplings between two ions using the far detuned Mlmer-Srenson scheme and perform adiabatic quantum simulations of Ising Hamiltonians with long-range couplings. We then demonstrate our ability to control the sign and relative strength of the interaction between three ions. Using this control, we simulate a frustrated triangular lattice, and for the first time establish an experimental connection between frustration and quantum entanglement. We then scale up our simulation to show phase transitions from paramagnetism to ferromagnetism for nine ions, and to anti-ferromagnetism for sixteen ions. The experimental work culminates with our most complicated Hamiltonian - a long range anti-ferromagnetic Ising interaction between 10 ions with a biasing axial field. Theoretical work presented in this thesis shows how the approach to quantum simulation utilized in this thesis can be further extended and improved. It is shown how appropriate design of laser elds can provide for arbitrary multidimensional spin-spin interaction graphs even for the case of a linear spatial array of ions. This scheme uses currently existing trap technology and is scalable to levels where classical methods of simulation are intractable.