Physics
Permanent URI for this communityhttp://hdl.handle.net/1903/2269
Browse
5 results
Search Results
Item A NEW HOPE: CAN WE PREDICT GEODYNAMO DYNAMICS?(2022) Perevalov, Artur; Lathrop, Daniel; Physics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)The Earth’s magnetic field is hugely important, as it protects the surface of the planet from cosmic radiation and charged particles coming from the Sun and enables navigation for many living species. However, how it is generated and why it changes its value and configuration in time is poorly understood. The leading theory for the generation of the Earth’s magnetic field is the geodynamo: an electrically conductive fluid in the Earth’s core creates and maintains a magnetic field over an astronomical time scale.To probe this theory experimentally, the Three Meter Experiment—a 3 meter diameter spherical-Couette apparatus—was built to model the Earth's core. The experiment consists of two rotating concentric spheres with liquid sodium between them. The rotating spheres generate fluid motion and reproduce the dynamics similar to those that occur in the planet's core. The previous generation of the experiment was not able to generate a self-sustaining magnetic field. However, numerical studies suggest that increasing the roughness of the liquid to the solid boundary should allow enable entering the dynamo regime. To test this, we first built a scaled-down model of the Three Meter sodium experiment. This was a 40-cm water experiment to examine the increase in helicity of the flow from installing baffles on the inner sphere. We then drained 12 tons of liquid sodium from the Three Meter experiment, cleaned, fixed, and upgraded it with baffles to increase surface roughness. We then re-filled the Three Meter experiment with sodium and performed several experiments. Here, we present the results of studying the torque scaling in the experiment. We show that the experiment's highest Reynolds number is limited by the maximum torque and power in the driving motors. We further investigate the magnetic data from various experiments and show that we are likely on the edge of the dynamo action. We present observation of traveling magneto-Coriolis modes and analyze their dynamics in different conditions. These structures are important for understanding some changes in celestial objects' magnetic fields and their mechanical properties. We also present a software tool developed to mimic the observed behavior of this magnetohydrodynamic experiment. This gives us a proper tool to predict the near future of dynamos, and allows us take a deeper look into its internal structure.Item Magnetic and Acoustic Investigations of Turbulent Spherical Couette Flow(2016) Adams, Matthew Michael; Lathrop, Daniel P; Physics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Title of dissertation: MAGNETIC AND ACOUSTIC INVESTIGATIONS OF TURBULENT SPHERICAL COUETTE FLOW Matthew M. Adams, Doctor of Philosophy, 2016 Dissertation directed by: Professor Daniel Lathrop Department of Physics This dissertation describes experiments in spherical Couette devices, using both gas and liquid sodium. The experimental geometry is motivated by the Earth's outer core, the seat of the geodynamo, and consists of an outer spherical shell and an inner sphere, both of which can be rotated independently to drive a shear flow in the fluid lying between them. In the case of experiments with liquid sodium, we apply DC axial magnetic fields, with a dominant dipole or quadrupole component, to the system. We measure the magnetic field induced by the flow of liquid sodium using an external array of Hall effect magnetic field probes, as well as two probes inserted into the fluid volume. This gives information about possible velocity patterns present, and we extend previous work categorizing flow states, noting further information that can be extracted from the induced field measurements. The limitations due to a lack of direct velocity measurements prompted us to work on developing the technique of using acoustic modes to measure zonal flows. Using gas as the working fluid in our 60~cm diameter spherical Couette experiment, we identified acoustic modes of the container, and obtained excellent agreement with theoretical predictions. For the case of uniform rotation of the system, we compared the acoustic mode frequency splittings with theoretical predictions for solid body flow, and obtained excellent agreement. This gave us confidence in extending this work to the case of differential rotation, with a turbulent flow state. Using the measured splittings for this case, our colleagues performed an inversion to infer the pattern of zonal velocities within the flow, the first such inversion in a rotating laboratory experiment. This technique holds promise for use in liquid sodium experiments, for which zonal flow measurements have historically been challenging.Item Transport in Rayleigh-Stable Experimental Taylor-Couette Flow and Granular Electrification in a Shaking Experiment(2015) Nordsiek, Freja; Lathrop, Daniel P; Physics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)This dissertation consists of two projects: Rayleigh-stable Taylor-Couette flow and granular electrification. Taylor-Couette flow is the fluid flow in the gap between two cylinders rotating at different rates. Azimuthal velocity profiles, dye visualization, and inner cylinder torques were measured on two geometrically similar Taylor-Couettes with axial boundaries attached to the outer cylinder, the Maryland and Twente T3C experiments. This was done in the Rayleigh stable regime, where the specific angular momentum increases radially, which is relevant to astrophysical and geophysical flows and in particular, stellar and planetary accretion disks. The flow substantially deviates from laminar Taylor-Couette flow beginning at moderate Reynolds number. Angular momentum is primarily transported to the axial boundaries instead of the outer cylinder due to Ekman pumping when the inner cylinder is rotating faster than the outer cylinder. A phase diagram was constructed from the transitions identified from torque measurements taken over four decades of the Reynolds number. Flow angular velocities larger and smaller than both cylinders were found. Together, these results indicate that experimental Taylor-Couette with axial boundaries attached to the outer cylinder is an imperfect model for accretion disk flows. Thunderstorms, thunder-snow, volcanic ash clouds, and dust storms all display lightning, which results from electrification of droplets and particles in the atmosphere. While lightning is fairly well understood (plasma discharge), the mechanisms that result in million-volt differences across the storm are not. A novel granular electrification experiment was upgraded and used to study some of these mechanisms in the lab. The relative importance of collective interactions between particles versus particle properties (material, size, etc.) on collisional electrification was investigated. While particle properties have an order of magnitude effect on the strength of macroscopic electrification, all particle types electrified with dynamics that suggest a major role for collective interactions in electrification. Moreover, mixing two types of particles together does not lead to increased electrification except for specific combinations of particles which clump, which further points towards the importance of collective phenomena. These results help us better understand the mechanisms of electrification and lightning generation in certain atmospheric systems.Item Characterization of Quantum Vortex Dynamics in Superfluid Helium(2015) Meichle, David P.; Lathrop, Daniel P; Physics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Liquid helium obtains superfluid properties when cooled below the Lambda transition temperature of 2.17 K. A superfluid, which is a partial Bose Einstein condensate, has many exotic properties including free flow without friction, and ballistic instead of diffusive heat transport. A superfluid is also uniquely characterized by the presence of quantized vortices, dynamical line-like topological phase defects around which all circulation in the flow is constrained. Two vortices can undergo a violent process called reconnection when they approach, cross, and retract having exchanged tails. With a numerical examination of a local, linearized solution near reconnection we discovered a dynamically unstable stationary solution to the Gross-Pitaevskii equation, which was relaxed to a fully non-linear solution using imaginary time propagation. This investigation explored vortex reconnection in the context of the changing topology of the order parameter, a complex field governing the superfluid dynamics at zero temperature. The dynamics of the vortices can be studied experimentally by dispersing tracer particles into a superfluid flow and recording their motions with movie cameras. The pioneering work of Bewley et al. provided the first visualization technique using frozen gases to create tracer particles. Using this technique, we experimentally observed for the first time the excitation of helical traveling waves on a vortex core called Kelvin waves. Kelvin waves are thought to be a central mechanism for dissipation in this inviscid fluid, as they provide an efficient cascade mechanism for transferring energy from large to microscopic length scales. We examined the Kelvin waves in detail, and compared their dynamics in fully self-similar non-dimensional coordinates to theoretical predictions. Additionally, two experimental advances are presented. A newly invented technique for reliably dispersing robust, nanometer-scale fluorescent tracer particles directly into the superfluid is described. A detailed numerical investigation of the particle-vortex interactions provides novel calculations of the force trapping particles on vortices, and a scaling was found suggesting that smaller particles may remain bound to the vortices at much higher speeds than larger particles. Lastly, a new stereographic imaging system has been developed, allowing for the world-first three-dimensional reconstruction of individual particles and vortex filament trajectories. Preliminary data, including the first three-dimensional observation of a vortex reconnection are presented.Item Inertial waves in a laboratory model of the Earth's core(2011) Triana, Santiago Andres; Lathrop, Daniel P; Physics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)A water-filled three-meter diameter spherical shell built as a model of the Earth's core shows evidence of precessionally forced flows and, when spinning the inner sphere differentially, inertial modes are excited. We identified the precessionally forced flow to be primarily the spin-over inertial mode, i.e., a uniform vorticity flow whose rotation axis is not aligned with the container's rotation axis. A systematic study of the spin-over mode is carried out, showing that the amplitude dependence on the Poincaré number is in qualitative agreement with Busse's laminar theory while its phase differs significantly, likely due to topographic effects. At high rotation rates free shear layers concentrating most of the kinetic energy of the spin-over mode have been observed. When spinning the inner sphere differentially, a total of 12 inertial modes have been identified, reproducing and extending previous experimental results. The inertial modes excited appear ordered according to their azimuthal drift speed as the Rossby number is varied.