Physics
Permanent URI for this communityhttp://hdl.handle.net/1903/2269
Browse
2 results
Search Results
Item Phase Transitions Affected by Molecular Interconversion(2023) Longo, Thomas; Anisimov, Mikhail; Chemical Physics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Typically, pure substances may be found with only one gaseous or liquid state, while their solid state may exist in various polymorphic states. The existence of two distinct liquid forms in a single component substance is more unusual since liquids lack the long-range order common to crystals. Yet, the existence of multiple amorphous states in a single component substance, a phenomenon known as "liquid polyamorphism," has been observed or predicted in a wide variety of substances. In contrast to standard phase transitions, it has been suggested that polyamorphic liquid-liquid transitions are caused by the interconversion of molecular or supramolecular states. To investigate this phenomenon, a nonequilibrium thermodynamic model was developed to quantitatively describe the interplay between the dynamics of molecular interconversion and fluid-phase separation. The theory has been compared to a variety of interconverting systems, and has demonstrated a quantitative agreement with the results of Monte Carlo and Molecular Dynamics simulations. In this thesis, it is shown that there are two major effects of molecular interconversion on the thermodynamics and the kinetics of fluid-phase separation: if the system evolves to an equilibrium state, then the growth of one of the alternative phases may result in the destruction of phase coexistence - a phenomenon referred to as "phase amplification." It is demonstrated that depending on the experimental or simulation conditions, either phase separation or phase amplification would be observed. Previous studies of polyamorphic substances report conflicting observations of phase formation, which may be explained by the possibility of phase amplification occurring. Alternatively, if the system evolves to a nonequilibrium steady state, the phase domain growth could be restricted at a mesoscopic length scale. This phenomenon (referred to as "microphase separation") is one of the simplest examples of steady-state dissipative structures, and may be applicable to active matter systems, hydrodynamic instabilities, and bifurcations in chemical reactions, in which the nonequilibrium conditions could be imposed by an external flux of matter or energy.Item An Experimental Realization of a Griffiths Phase in 87Rb in Three Dimensions(2017) Reed, Matthew Earl Wallace; Rolston, Steven L; Physics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)We describe a novel High Bandwidth Arbitrary Lattice Generator (HiBAL) we’ve created to skirt limits imposed on monochromatic standing waves of light. With its current iteration we can phase and amplitude modulate optical lattices over a broad range of wavevectors simultaneously at MHz frequencies. We characterize the HiBAL with a multi-Mach-Zehnder interferometer and a 0.5 NA diffraction limited imaging system, both designed and built in-house. We report lattice phase control to within a few parts in a thousand. Disorder plays an important role in the phase diagrams of many materials. Crystal defects can cause exotic phases to coexist with the mundane in real world systems, and some phase diagrams are even dominated by the effects of disorder. We report the trapping and characterization of a Bose gas in an optical field isotropic in two dimensions and disordered in a third. We evaluate the phase diagram of our system as a function of temperature and disorder depth, and find favorable comparisons with indications of an intermediate Griffiths phase predicted by previous Monte Carlo and Renormalization Group studies separating 2D and 3D superfluid regimes. Finally, I discuss the possibility of realizing the BKT transition in a non-orientable space. The BKT phase transition is an infinite order phase transition in two dimensions from a normal gas to a superfluid mediated by vortices, which are orientable topological phase defects in two dimensions. I discuss the properties of vortices and their intractions on a Mobius strip, and describe how a relay-imaged bichromatic optical potential could be used to form a Mobius strip out of ultracold gases.