Physics
Permanent URI for this communityhttp://hdl.handle.net/1903/2269
Browse
2 results
Search Results
Item Photon Thermalization in Driven Open Quantum Systems(2018) Wang, Chiao-Hsuan; Taylor, Jacob M; Physics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Light is a paradigmatic quantum field, with individual excitations---photons---that are the most accessible massless particles known. However, their lack of mass and extremely weak interactions mean that typically the thermal description of light is that of blackbody radiation. As the temperature of the light decreases, the overall number of photons approaches zero. Therefore, efforts for quantum optics and optical physics have mostly focused on driving systems far from equilibrium to populate sufficient numbers of photons. While lasers provide a severe example of a nonequilibrium problem, recent interests in the near-equilibrium physics of so-called photon gases, such as in Bose condensation of light or in attempts to make photonic quantum simulators, suggest one re-examine near-equilibrium cases. In this thesis, we consider peculiar driven open quantum system scenarios where near-equilibrium dynamics can lead to equilibration of photons with a finite number, following a thermal description closer to that of an ideal gas than to blackbody radiation. Specifically, we show how laser cooling of a well-isolated mechanical mode or atomic motion can provide an effective bath which enables control of both the chemical potential and temperature of the resulting grand canonical ensemble of photon. We then theoretically demonstrate that Bose condensation of photons can be realized by cooling an ensemble of two-level atoms inside a cavity. Finally, we find that the engineered chemical potential for light not only admits future applications in many-body quantum simulations, facilitates preparation of near-equilibrium photonic states, but also enables an analogous voltage bias for photonic circuit elements.Item Disordered Ultracold Two-Dimensional Bose Gases(2010) Beeler, Matthew; Rolston, Steven; Physics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Ultracold bose gase systems can perform quantum simulations of high temperature superconductors in certain parameter regimes. Specifically, 2D bose gases at low temperatures exhibit a superfluid to thermal gas phase transition analogous to the superconductor to insulator transition in certain superconductors. The unbinding of thermally activated vortex pairs drives this phase transition, and disorder is expected to affect vortex motion in this system. In addition, disorder itself can drive phase transitions in superconductors. We have designed and built a system which produces two 2D ultracold Bose gas systems separated by a few microns. In addition, we have also produced a disordered speckled laser intensity pattern with a grain size of ~1 μm, small enough to provide a disordered potential for the two systems. We have observed the superfluid phase transition with and without the presence of disorder. The coherence of the system, which is related to superfluidity, is strongly reduced by the presence of disorder, even at small disorder strength, but the effect of the disorder on observed vortices in the system is less clear.