Physics
Permanent URI for this communityhttp://hdl.handle.net/1903/2269
Browse
2 results
Search Results
Item Greedy permanent magnet optimization(Institute of Physics, 2023-02-03) Kaptanoglu, Alan A.; Conlin, Rory; Landreman, MattA number of scientific fields rely on placing permanent magnets in order to produce a desired magnetic field. We have shown in recent work that the placement process can be formulated as sparse regression. However, binary, grid-aligned solutions are desired for realistic engineering designs. We now show that the binary permanent magnet problem can be formulated as a quadratic program with quadratic equality constraints, the binary, grid-aligned problem is equivalent to the quadratic knapsack problem with multiple knapsack constraints, and the single-orientation-only problem is equivalent to the unconstrained quadratic binary problem. We then provide a set of simple greedy algorithms for solving variants of permanent magnet optimization, and demonstrate their capabilities by designing magnets for stellarator plasmas. The algorithms can a-priori produce sparse, grid-aligned, binary solutions. Despite its simple design and greedy nature, we provide an algorithm that compares with or even outperforms the state-of-the-art algorithms while being substantially faster, more flexible, and easier to use.Item Mapping the space of quasisymmetric stellarators using optimized near-axis expansion(Cambridge University Press, 2022-12-23) Landreman, MattA method is demonstrated to rapidly calculate the shapes and properties of quasi-axisymmetric and quasi-helically symmetric stellarators. In this approach, optimization is applied to the equations of magnetohydrodynamic equilibrium and quasisymmetry, expanded in the small distance from the magnetic axis, as formulated by Garren & Boozer [Phys. Fluids B, vol. 3, 1991, p. 2805]. Due to the reduction of the equations by the expansion, the computational cost is significantly reduced, to times of the order of 1 cpu second, enabling wide and high-resolution scans over parameter space. In contrast to traditional stellarator optimization, here, the cost function serves to maximize the volume in which the expansion is accurate. A key term in the cost function is ∥∇B∥ , the norm of the magnetic field gradient, to maximize scale lengths in the field. Using this method, a database of 5×105 optimized configurations is calculated and presented. Quasisymmetric configurations are observed to exist in continuous bands, varying in the ratio of the magnetic axis length to average major radius. Several qualitatively new types of configuration are found, including quasi-helically symmetric fields in which the number of field periods is two or more than six.