Physics
Permanent URI for this communityhttp://hdl.handle.net/1903/2269
Browse
2 results
Search Results
Item Proton propagation in nuclei studied in the A dependence of the (e,e’p) reaction in the quasifree region(1989-08) Geesaman, D.F.; Gilman, R.; Green, M.C.; Holt, R.J.; Schiffer, J.P.; Zeidman, B.; Garino, G.; Saber, M.; Segel, R.E.; Beise, E.J.; Dodson, G.W.; Hoibraten, S.; Pham, L.D.; Redwine, R.P.; Sapp, W.W.; Williamson, C.F.; Wood, S.A.; Chant, N.S.; Roos, P.G.; Silk, J.D.; Deady, M.; Maruyama, X.K.The A dependence of the (e,e’p) reaction in the quasifree region has been measured at an average Q2 of 0.33 (GeV/c)2 for targets of 12C, 27Al, 58Ni, and 181Ta. The outgoing proton kinetic energy was 180±30 MeV. By comparing the ratio of (e,e’p) coincidence to (e,e’) singles yields, average proton transmissions are obtained for each target. The resulting ‘‘mean free path’’ or, more precisely, the attenuation length for protons in the nucleus is significantly longer than expectations based on the free nucleon-nucleon cross section.Item Proton propagation in nuclei studied in the (e,e’p) reaction(1992-02) Geesaman, D.F.; Gilman, R.; Green, M.C.; Holt, R.J.; Schiffer, J.P.; Zeidman, B.; Garino, G.; Saber, M.; Segel, R.E.; Beise, E.J.; Dodson, G.W.; Hoibraten, S.; Pham, L.D.; Redwine, R.P.; Sapp, W.W.; Williamson, C.F.; Wood, S.A.; Chant, N.S.; Roos, P.G.; Silk, J.D.; Deady, M.; Maruyama, X.K.Proton propagation in nuclei was studied using the (e,e’p) reaction in the quasifree region. The coincidence (e,e’p) cross sections were measured at an electron angle of 50.4° and proton angles of 50.1°, 58.2°, 67.9°, and 72.9° for 12C, 27Al, 58Ni, and 181Ta targets at a beam energy of 779.5 MeV. The average outgoing proton energy was 180 MeV. The ratio of the (e,e’p) yield to the simultaneously measured (e,e’) yield was compared to that calculated in the plane-wave impulse approximation and an experimental transmission defined. These experimental transmissions are considerably larger (a factor of ∼2 for 181Ta) than those one would calculate from the free N-N cross sections folded into the nuclear density distribution. A new calculation that includes medium effects (N-N correlations, density dependence of the N-N cross sections and Pauli suppression) accounts for this increase.