Physics
Permanent URI for this communityhttp://hdl.handle.net/1903/2269
Browse
3 results
Search Results
Item Experimental Realization of Anti-Unitary Wave-Chaotic Photonic Topological Insulator Graphs Showing Kramers Degeneracy and Symplectic Ensemble Statistics(Wiley, 2023-11-15) Ma, Shukai; Anlage, Steven M.Working in analogy with topological insulators in condensed matter, photonic topological insulators (PTI) have been experimentally realized, and protected electromagnetic edge-modes have been demonstrated in such systems. Moreover, PTI technology also emulates a synthetic spin-1/2 degree of freedom (DOF) in the reflectionless topological modes. The spin-1/2 DOF is carried by quantum valley Hall (QVH)/quantum spin Hall (QSH) interface modes created from the bianisotropic meta waveguide platform and realized both in simulation and experiment. The PTI setting is employed to build an ensemble of wave chaotic 1D metric graphs that display statistical properties consistent with Gaussian symplectic ensemble (GSE) statistics. The two critical ingredients required to create a physical system in the GSE universality class, the half-integer-spin DOF and preserved time-reversal invariance, are clearly realized in the QVH/QSH interface modes. The anti-unitary T-operator is identified for the PTI Hamiltonian underlying the experimental realization. An ensemble of PTI-edgemode metric graphs are proposed and experimentally demonstrated. Then, the Kramers degeneracy of eigenmodes of the PTI-graph systems is demonstrated with both numerical and experimental studies. Further, spectral statistical studies of the edgemode graphs are studied, and good agreement with the GSE theoretical predictions is found. The PTI chaotic graph structures present an innovative and easily extendable platform for continued future investigation of GSE systems.Item Anomalous Loss Reduction Below Two-Level System Saturation in Aluminum Superconducting Resonators(Wiley, 2023-11-28) Tai, Tamin; Cai, Jingnan; Anlage, Steven M.Superconducting resonators are widely used in many applications such as qubit readout for quantum computing, and kinetic inductance detectors. These resonators are susceptible to numerous loss and noise mechanisms, especially the dissipation due to two-level systems (TLS) which become the dominant source of loss in the few-photon and low temperature regime. In this study, capacitively-coupled aluminum half-wavelength coplanar waveguide resonators are investigated. Surprisingly, the loss of the resonators is observed to decrease with a lowering temperature at low excitation powers and temperatures below the TLS saturation. This behavior is attributed to the reduction of the TLS resonant response bandwidth with decreasing temperature and power to below the detuning between the TLS and the resonant photon frequency in a discrete ensemble of TLS. When response bandwidths of TLS are smaller than their detunings from the resonance, the resonant response and thus the loss is reduced. At higher excitation powers, the loss follows a logarithmic power dependence, consistent with predictions from the generalized tunneling model (GTM). A model combining the discrete TLS ensemble with the GTM is proposed and matches the temperature and power dependence of the measured internal loss of the resonator with reasonable parameters.Item Perfect absorption in complex scattering systems with or without hidden symmetries(Springer Nature, 2020-11-17) Chen, Lei; Kottos, Tsampikos; Anlage, Steven M.Wavefront shaping (WFS) schemes for efficient energy deposition in weakly lossy targets is an ongoing challenge for many classical wave technologies relevant to next-generation telecommunications, long-range wireless power transfer, and electromagnetic warfare. In many circumstances these targets are embedded inside complicated enclosures which lack any type of (geometric or hidden) symmetry, such as complex networks, buildings, or vessels, where the hypersensitive nature of multiple interference paths challenges the viability of WFS protocols. We demonstrate the success of a general WFS scheme, based on coherent perfect absorption (CPA) electromagnetic protocols, by utilizing a network of coupled transmission lines with complex connectivity that enforces the absence of geometric symmetries. Our platform allows for control of the local losses inside the network and of the violation of time-reversal symmetry via a magnetic field; thus establishing CPA beyond its initial concept as the time-reversal of a laser cavity, while offering an opportunity for better insight into CPA formation via the implementation of semiclassical tools.