Cell Biology & Molecular Genetics

Permanent URI for this communityhttp://hdl.handle.net/1903/11811

Browse

Search Results

Now showing 1 - 10 of 130
  • Thumbnail Image
    Item
    A sensitive flow cytometric methodology for studying the binding of L. chagasi to canine peritoneal macrophages
    (Springer Nature, 2005-05-24) Gonçalves, Ricardo; Vieira, Etel R; Melo, Maria N; Gollob, Kenneth J; Mosser, David M; Tafuri, Wagner L
    The Leishmania promastigote-macrophage interaction occurs through the association of multiple receptors on the biological membrane surfaces. The success of the parasite infection is dramatically dependent on this early interaction in the vertebrate host, which permits or not the development of the disease. In this study we propose a novel methodology using flow cytometry to study this interaction, and compare it with a previously described "in vitro" binding assay. To study parasite-macrophage interaction, peritoneal macrophages were obtained from 4 dogs and adjusted to 3 × 106 cells/mL. Leishmania (Leishmania) chagasi parasites (stationary-phase) were adjusted to 5 × 107 cells/mL. The interaction between CFSE-stained Leishmania chagasi and canine peritoneal macrophages was performed in polypropylene tubes to avoid macrophage adhesion. We carried out assays in the presence or absence of normal serum or in the presence of a final concentration of 5% of C5 deficient (serum from AKR/J mice) mouse serum. Then, the number of infected macrophages was counted in an optical microscope, as well as by flow citometry. Macrophages obtained were stained with anti-CR3 (CD11b/CD18) antibodies and analyzed by flow citometry. Our results have shown that the interaction between Leishmania and macrophages can be measured by flow cytometry using the fluorescent dye CFSE to identify the Leishmania, and measuring simultaneously the expression of an important integrin involved in this interaction: the CD11b/CD18 (CR3 or Mac-1) β2 integrin. Flow cytometry offers rapid, reliable and sensitive measurements of single cell interactions with Leishmania in unstained or phenotypically defined cell populations following staining with one or more fluorochromes.
  • Thumbnail Image
    Item
    SNPs3D: Candidate gene and SNP selection for association studies
    (Springer Nature, 2006-03-22) Yue, Peng; Melamud, Eugene; Moult, John
    The relationship between disease susceptibility and genetic variation is complex, and many different types of data are relevant. We describe a web resource and database that provides and integrates as much information as possible on disease/gene relationships at the molecular level. The resource http://www.SNPs3D.org has three primary modules. One module identifies which genes are candidates for involvement in a specified disease. A second module provides information about the relationships between sets of candidate genes. The third module analyzes the likely impact of non-synonymous SNPs on protein function. Disease/candidate gene relationships and gene-gene relationships are derived from the literature using simple but effective text profiling. SNP/protein function relationships are derived by two methods, one using principles of protein structure and stability, the other based on sequence conservation. Entries for each gene include a number of links to other data, such as expression profiles, pathway context, mouse knockout information and papers. Gene-gene interactions are presented in an interactive graphical interface, providing rapid access to the underlying information, as well as convenient navigation through the network. Use of the resource is illustrated with aspects of the inflammatory response and hypertension. The combination of SNP impact analysis, a knowledge based network of gene relationships and candidate genes, and access to a wide range of data and literature allow a user to quickly assimilate available information, and so develop models of gene-pathway-disease interaction.
  • Thumbnail Image
    Item
    Influence of sequence identity and unique breakpoints on the frequency of intersubtype HIV-1 recombination
    (Springer Nature, 2006-12-12) Baird, Heather A; Gao, Yong; Galetto, Román; Lalonde, Matthew; Anthony, Reshma M; Giacomoni, Véronique; Abreha, Measho; Destefano, Jeffrey J; Negroni, Matteo; Arts, Eric J
    HIV-1 recombination between different subtypes has a major impact on the global epidemic. The generation of these intersubtype recombinants follows a defined set of events starting with dual infection of a host cell, heterodiploid virus production, strand transfers during reverse transcription, and then selection. In this study, recombination frequencies were measured in the C1-C4 regions of the envelope gene in the presence (using a multiple cycle infection system) and absence (in vitro reverse transcription and single cycle infection systems) of selection for replication-competent virus. Ugandan subtypes A and D HIV-1 env sequences (115-A, 120-A, 89-D, 122-D, 126-D) were employed in all three assay systems. These subtypes co-circulate in East Africa and frequently recombine in this human population. Increased sequence identity between viruses or RNA templates resulted in increased recombination frequencies, with the exception of the 115-A virus or RNA template. Analyses of the recombination breakpoints and mechanistic studies revealed that the presence of a recombination hotspot in the C3/V4 env region, unique to 115-A as donor RNA, could account for the higher recombination frequencies with the 115-A virus/template. Single-cycle infections supported proportionally less recombination than the in vitro reverse transcription assay but both systems still had significantly higher recombination frequencies than observed in the multiple-cycle virus replication system. In the multiple cycle assay, increased replicative fitness of one HIV-1 over the other in a dual infection dramatically decreased recombination frequencies. Sequence variation at specific sites between HIV-1 isolates can introduce unique recombination hotspots, which increase recombination frequencies and skew the general observation that decreased HIV-1 sequence identity reduces recombination rates. These findings also suggest that the majority of intra- or intersubtype A/D HIV-1 recombinants, generated with each round of infection, are not replication-competent and do not survive in the multiple-cycle system. Ability of one HIV-1 isolate to outgrow the other leads to reduced co-infections, heterozygous virus production, and recombination frequencies.
  • Thumbnail Image
    Item
    Comprehensive analysis of alternative splicing in rice and comparative analyses with Arabidopsis
    (Springer Nature, 2006-12-28) Campbell, Matthew A; Haas, Brian J; Hamilton, John P; Mount, Stephen M; Buell, C Robin
    Recently, genomic sequencing efforts were finished for Oryza sativa (cultivated rice) and Arabidopsis thaliana (Arabidopsis). Additionally, these two plant species have extensive cDNA and expressed sequence tag (EST) libraries. We employed the Program to Assemble Spliced Alignments (PASA) to identify and analyze alternatively spliced isoforms in both species. A comprehensive analysis of alternative splicing was performed in rice that started with >1.1 million publicly available spliced ESTs and over 30,000 full length cDNAs in conjunction with the newly enhanced PASA software. A parallel analysis was performed with Arabidopsis to compare and ascertain potential differences between monocots and dicots. Alternative splicing is a widespread phenomenon (observed in greater than 30% of the loci with transcript support) and we have described nine alternative splicing variations. While alternative splicing has the potential to create many RNA isoforms from a single locus, the majority of loci generate only two or three isoforms and transcript support indicates that these isoforms are generally not rare events. For the alternate donor (AD) and acceptor (AA) classes, the distance between the splice sites for the majority of events was found to be less than 50 basepairs (bp). In both species, the most frequent distance between AA is 3 bp, consistent with reports in mammalian systems. Conversely, the most frequent distance between AD is 4 bp in both plant species, as previously observed in mouse. Most alternative splicing variations are localized to the protein coding sequence and are predicted to significantly alter the coding sequence. Alternative splicing is widespread in both rice and Arabidopsis and these species share many common features. Interestingly, alternative splicing may play a role beyond creating novel combinations of transcripts that expand the proteome. Many isoforms will presumably have negative consequences for protein structure and function, suggesting that their biological role involves post-transcriptional regulation of gene expression.
  • Thumbnail Image
    Item
    Effect of gonococcal lipooligosaccharide variation on human monocytic cytokine profile
    (Springer Nature, 2007-01-26) Patrone, Julia B; Stein, Daniel C
    Neisseria gonorrhoeae is an obligate human pathogen that causes significant worldwide morbidity. N. gonorrhoeae expresses lipooligosaccharide (LOS), a phase variable molecule that plays an important role during pathogenesis of the organism. Alteration in the structure of gonococcal LOS correlates with altered disease presentation. In addition, LOS sialylation occurs readily in vivo, though the role of this sialylation during disease is unknown. Challenge of human monocytes with purified LOS preparations isolated from strains expressing distinct structurally defined LOSs resulted in identical production of the proinflammatory cytokines tumor necrosis factor alpha (TNFα) and interleukin-12 (IL-12). Similar results were seen when monocytes were challenged with either live or gentamicin-killed whole cell gonococcal variants expressing these LOS structures, although greater cytokine production was observed in comparison with challenge by purified LOS. Challenge of a human primary monocyte model with distinct LOS variants resulted in similar production of TNFα, IL-12, interleukin-10 (IL-10), and interleukin-8 (IL-8). A cytokine array was employed to allow measurement of a broad range of cytokines in samples challenge with gonococcal LOS variants as well as variants expressing sialylated LOS. Challenge of primary monocytes with sialylated gonococci was shown to elicit the production of more MCP-2 (monocyte chemoattractant protein-2) in comparison with challenge by unsialylated gonococci. We demonstrated that while alterations in the carbohydrate moiety of LOS do not impact the production of most cytokines by human monocytes, whole-cell bacterial challenge is more stimulatory than challenge with purified LOS, implying that other gonococcal cell surface antigens are important for the elicitation of cytokines. Challenge with gonococci expressing sialylated LOS resulted in elicitation of more of the chemokine MCP-2 from challenged cells in comparison with gonococci expressing unsialylated LOS. As MCP-2 is an important chemoattractant, this indicates that in vivo sialylation may play an important role during the pathogenesis of N. gonorrhoeae.
  • Thumbnail Image
    Item
    A computational survey of candidate exonic splicing enhancer motifs in the model plant Arabidopsis thaliana
    (Springer Nature, 2007-05-21) Pertea, Mihaela; Mount, Stephen M; Salzberg, Steven L
    Algorithmic approaches to splice site prediction have relied mainly on the consensus patterns found at the boundaries between protein coding and non-coding regions. However exonic splicing enhancers have been shown to enhance the utilization of nearby splice sites. We have developed a new computational technique to identify significantly conserved motifs involved in splice site regulation. First, 84 putative exonic splicing enhancer hexamers are identified in Arabidopsis thaliana. Then a Gibbs sampling program called ELPH was used to locate conserved motifs represented by these hexamers in exonic regions near splice sites in confirmed genes. Oligomers containing 35 of these motifs have been shown experimentally to induce significant inclusion of A. thaliana exons. Second, integration of our regulatory motifs into two different splice site recognition programs significantly improved the ability of the software to correctly predict splice sites in a large database of confirmed genes. We have released GeneSplicerESE, the improved splice site recognition code, as open source software. Our results show that the use of the ESE motifs consistently improves splice site prediction accuracy.
  • Thumbnail Image
    Item
    Microarray analysis of gene expression induced by sexual contact in Schistosoma mansoni
    (Springer Nature, 2007-06-20) Waisberg, Michael; Lobo, Francisco P; Cerqueira, Gustavo C; Passos, Liana KJ; Carvalho, Omar S; Franco, Glória R; El-Sayed, Najib M
    The parasitic trematode Schistosoma mansoni is one of the major causative agents of Schistosomiasis, a disease that affects approximately 200 million people, mostly in developing countries. Since much of the pathology is associated with eggs laid by the female worm, understanding the mechanisms involved in oogenesis and sexual maturation is an important step towards the discovery of new targets for effective drug therapy. It is known that the adult female worm only develops fully in the presence of a male worm and that the rates of oviposition and maturation of eggs are significantly increased by mating. In order to study gene transcripts associated with sexual maturation and oviposition, we compared the gene expression profiles of sexually mature and immature parasites using DNA microarrays. For each experiment, three amplified RNA microarray hybridizations and their dye swaps were analyzed. Our results show that 265 transcripts are differentially expressed in adult females and 53 in adult males when mature and immature worms are compared. Of the genes differentially expressed, 55% are expressed at higher levels in paired females while the remaining 45% are more expressed in unpaired ones and 56.6% are expressed at higher levels in paired male worms while the remaining 43.4% are more expressed in immature parasites. Real-time RT-PCR analysis validated the microarray results. Several new maturation associated transcripts were identified. Genes that were up-regulated in single-sex females were mostly related to energy generation (i.e. carbohydrate and protein metabolism, generation of precursor metabolites and energy, cellular catabolism, and organelle organization and biogenesis) while genes that were down-regulated related to RNA metabolism, reactive oxygen species metabolism, electron transport, organelle organization and biogenesis and protein biosynthesis. Our results confirm previous observations related to gene expression induced by sexual maturation in female schistosome worms. They also increase the list of S. mansoni maturation associated transcripts considerably, therefore opening new and exciting avenues for the study of the conjugal biology and development of new drugs against schistosomes.
  • Thumbnail Image
    Item
    Origin and distribution of epipolythiodioxopiperazine (ETP) gene clusters in filamentous ascomycetes
    (Springer Nature, 2007-09-26) Patron, Nicola J; Waller, Ross F; Cozijnsen, Anton J; Straney, David C; Gardiner, Donald M; Nierman, William C; Howlett, Barbara J
    Genes responsible for biosynthesis of fungal secondary metabolites are usually tightly clustered in the genome and co-regulated with metabolite production. Epipolythiodioxopiperazines (ETPs) are a class of secondary metabolite toxins produced by disparate ascomycete fungi and implicated in several animal and plant diseases. Gene clusters responsible for their production have previously been defined in only two fungi. Fungal genome sequence data have been surveyed for the presence of putative ETP clusters and cluster data have been generated from several fungal taxa where genome sequences are not available. Phylogenetic analysis of cluster genes has been used to investigate the assembly and heredity of these gene clusters. Putative ETP gene clusters are present in 14 ascomycete taxa, but absent in numerous other ascomycetes examined. These clusters are discontinuously distributed in ascomycete lineages. Gene content is not absolutely fixed, however, common genes are identified and phylogenies of six of these are separately inferred. In each phylogeny almost all cluster genes form monophyletic clades with non-cluster fungal paralogues being the nearest outgroups. This relatedness of cluster genes suggests that a progenitor ETP gene cluster assembled within an ancestral taxon. Within each of the cluster clades, the cluster genes group together in consistent subclades, however, these relationships do not always reflect the phylogeny of ascomycetes. Micro-synteny of several of the genes within the clusters provides further support for these subclades. ETP gene clusters appear to have a single origin and have been inherited relatively intact rather than assembling independently in the different ascomycete lineages. This progenitor cluster has given rise to a small number of distinct phylogenetic classes of clusters that are represented in a discontinuous pattern throughout ascomycetes. The disjunct heredity of these clusters is discussed with consideration to multiple instances of independent cluster loss and lateral transfer of gene clusters between lineages.
  • Thumbnail Image
    Item
    PRFdb: A database of computationally predicted eukaryotic programmed -1 ribosomal frameshift signals
    (Springer Nature, 2008-07-17) Belew, Ashton T; Hepler, Nicholas L; Jacobs, Jonathan L; Dinman, Jonathan D
    The Programmed Ribosomal Frameshift Database (PRFdb) provides an interface to help researchers identify potential programmed -1 ribosomal frameshift (-1 PRF) signals in eukaryotic genes or sequences of interest. To identify putative -1 PRF signals, sequences are first imported from whole genomes or datasets, e.g. the yeast genome project and mammalian gene collection. They are then filtered through multiple algorithms to identify potential -1 PRF signals as defined by a heptameric slippery site followed by an mRNA pseudoknot. The significance of each candidate -1 PRF signal is evaluated by comparing the predicted thermodynamic stability (ΔG°) of the native mRNA sequence against a distribution of ΔG° values of a pool of randomized sequences derived from the original. The data have been compiled in a user-friendly, easily searchable relational database. The PRFdB enables members of the research community to determine whether genes that they are investigating contain potential -1 PRF signals, and can be used as a metasource of information for cross referencing with other databases. It is available on the web at http://dinmanlab.umd.edu/prfdb .
  • Thumbnail Image
    Item
    Simple allele-discriminating PCR for cost-effective and rapid genotyping and mapping
    (Springer Nature, 2009-01-08) Bui, Minh; Liu, Zhongchi
    Single nucleotide polymorphisms (SNPs) are widely observed between individuals, ecotypes, and species, serving as an invaluable molecular marker for genetic, genomic, ecological and evolutionary studies. Although, a large number of SNP-discriminating methods are currently available, few are suited for low-throughput and low-cost applications. Here, we describe a genotyping method named S imple A llele-discriminating P CR (SAP), which is ideally suited for the small-scale genotyping and gene mapping routinely performed in small to medium research or teaching laboratories. We demonstrate the feasibility and application of SAP to discriminate wild type alleles from their respective mutant alleles in Arabidopsis thaliana. Although the design principle was previously described, it is unclear if the method is technically robust, reliable, and applicable. Three primers were designed for each individual SNP or allele with two allele-discriminating forward primers (one for wild type and one for the mutant allele) and a common reverse primer. The two allele-discriminating forward primers are designed so that each incorporates one additional mismatch at the adjacent (penultimate) site from the SNP, resulting in two mismatches between the primer and its non-target template and one mismatch between the primer and its target template. The presence or absence of the wild type or the mutant allele correlates with the presence or absence of respective PCR product. The presence of both wild type-specific and mutant-specific PCR products would indicate heterozygosity. SAP is shown here to discriminate three mutant alleles (lug-3, lug-16, and luh-1) from their respective wild type alleles. In addition, the SAP principle is shown to work in conjunction with fluorophore-labeled primers, demonstrating the feasibility of applying SAP to high throughput SNP analyses. SAP offers an excellent alternative to existing SNP-discrimination methods such as Cleaved Amplified Polymorphic Sequence (CAPS) or derived CAPS (dCAPS). It can also be adapted for high throughput SNP analyses by incorporating fluorophore-labeled primers. SAP is reliable, cost-effective, fast, and simple, and can be applied to all organisms not limited to Arabidopsis thaliana.