Cell Biology & Molecular Genetics

Permanent URI for this communityhttp://hdl.handle.net/1903/11811

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    The Potentials of Methylene Blue as an Anti-Aging Drug
    (MDPI, 2021-12-01) Xue, Huijing; Thaivalappil, Abhirami; Cao, Kan
    Methylene blue (MB), as the first fully man-made medicine, has a wide range of clinical applications. Apart from its well-known applications in surgical staining, malaria, and methemoglobinemia, the anti-oxidative properties of MB recently brought new attention to this century-old drug. Mitochondrial dysfunction has been observed in systematic aging that affects many different tissues, including the brain and skin. This leads to increaseding oxidative stress and results in downstream phenotypes under age-related conditions. MB can bypass Complex I/III activity in mitochondria and diminish oxidative stress to some degree. This review summarizes the recent studies on the applications of MB in treating age-related conditions, including neurodegeneration, memory loss, skin aging, and a premature aging disease, progeria.
  • Thumbnail Image
    Item
    Impaired LEF1 Activation Accelerates iPSC-Derived Keratinocytes Differentiation in Hutchinson-Gilford Progeria Syndrome
    (MDPI, 2022-05-14) Mao, Xiaojing; Xiong, Zheng-Mei; Xue, Huijing; Brown, Markus A.; Gete, Yantenew G.; Yu, Reynold; Sun, Linlin; Cao, Kan
    Hutchinson–Gilford progeria syndrome (HGPS) is a detrimental premature aging disease caused by a point mutation in the human LMNA gene. This mutation results in the abnormal accumulation of a truncated pre-lamin A protein called progerin. Among the drastically accelerated signs of aging in HGPS patients, severe skin phenotypes such as alopecia and sclerotic skins always develop with the disease progression. Here, we studied the HGPS molecular mechanisms focusing on early skin development by differentiating patient-derived induced pluripotent stem cells (iPSCs) to a keratinocyte lineage. Interestingly, HGPS iPSCs showed an accelerated commitment to the keratinocyte lineage than the normal control. To study potential signaling pathways that accelerated skin development in HGPS, we investigated the WNT pathway components during HGPS iPSCs-keratinocytes induction. Surprisingly, despite the unaffected β-catenin activity, the expression of a critical WNT transcription factor LEF1 was diminished from an early stage in HGPS iPSCs-keratinocytes differentiation. A chromatin immunoprecipitation (ChIP) experiment further revealed strong bindings of LEF1 to the early-stage epithelial developmental markers K8 and K18 and that the LEF1 silencing by siRNA down-regulates the K8/K18 transcription. During the iPSCs-keratinocytes differentiation, correction of HGPS mutation by Adenine base editing (ABE), while in a partial level, rescued the phenotypes for accelerated keratinocyte lineage-commitment. ABE also reduced the cell death in HGPS iPSCs-derived keratinocytes. These findings brought new insight into the molecular basis and therapeutic application for the skin abnormalities in HGPS.
  • Thumbnail Image
    Item
    DEVELOPMENT OF AN ACCELERATED ALZHEIMER’S DISEASE IN VITRO MODEL WITH THE ADDITION OF PROGERIN
    (2023) Xue, Huijing; Cao, Kan; Cell Biology & Molecular Genetics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Alzheimer’s Disease (AD) is one of the most common causes of dementia. Twopathological features of AD include amyloid plaques and neurofibrillary tangles. The mechanism underlying the disease's onset and progression remains unclear. Lamin A is an essential component of the nuclear lamina, and nuclear lamina plays a vital role in essential cell functions. Specific mutations in lamin A yield a truncated protein called progerin that causes Hutchinson-Gilford Progeria Syndrome (HGPS), a premature aging disease. Despite the low expression of lamin A in the brain, several studies reported abnormal lamin A accumulation in patients' hippocampus through the different stages of AD. Besides, there are a lot of common phenotypes between AD and HGPS. Meanwhile, one of the challenges of studying AD is the model issue. It is difficult to recapitulate all AD pathology in a single model, and most models are time-consuming. This dissertation focuses on goals: (1) exploring the potential role of lamin A in AD and (2) facilitating the AD model development. To investigate the potential role of lamin A in AD, I overexpressed either lamin A or progerin in neural cells and checked the phenotypes in Chapter II. Early cell death is closely associated with neuronal loss in AD. After ectopically expressing lamin A in neural cells, early cell death was slightly increased. Progerin could worsen these phenotypes. Oxidative stress and cell cycle re-entry are early events in neurodegeneration and are associated with increased cell death. With the ectopic expression of lamin A, neural cells exhibited slightly elevated oxidative stress and significantly increased cell cycle reactivation. Both two events were significantly increased with exogenous progerin. These results provide insights into how lamin A is involved in neurodegeneration. Besides, progerin addition could further disrupt cellular homeostasis and therefore provide a potential environment for modeling late-onset disease. Most of the current cellular models for AD require several months to display AD phenotypic features, mainly because of the lack of an aging environment in the in vitro cell culture, which is an essential player in age-related neurodegeneration. To provide the aging environment for modeling AD, I examined the impacts of exogenous progerin expression on the neural progenitor cells carrying familial AD mutations (FAD) in Chapter III. Exogenous progerin could accelerate hallmark AD phenotype exhibition from 8-16 weeks to 3-4 weeks, including increased tau phosphorylation and Aβ42/Aβ40 ratio in 2D cell culture, and accumulation of amyloid plaques in 3D cell culture. Additional AD cellular phenotypes, including elevated cell death and cell cycle re-entry, were significantly increased after progerin intervention as well. Together, these results indicated that the approach with progerin expression could create an accelerated model for modeling AD development and future drug screening.