Biology
Permanent URI for this communityhttp://hdl.handle.net/1903/11810
Browse
2 results
Search Results
Item Hyperpolarization-Activated Currents and Subthreshold Resonance in Granule Cells of the Olfactory Bulb(Society for Neuroscience, 2016-10-27) Hu, Ruilong; Ferguson, Katie A.; Whiteus, Christina B.; Meijer, Dimphna H.; Araneda, Ricardo C.An important contribution to neural circuit oscillatory dynamics is the ongoing activation and inactivation of hyperpolarization-activated currents (/h). Network synchrony dynamics play an important role in the initial processing of odor signals by the main olfactory bulb (MOB) and accessory olfactory bulb (AOB). In the mouse olfactory bulb, we show that /h is present in granule cells (GCs), the most prominent inhibitory neuron in the olfactory bulb, and that /h underlies subthreshold resonance in GCs. In accord with the properties of /h, the currents exhibited sensitivity to changes in extracellular K+ concentration and ZD7288 (4-ethylphenylamino-1,2-dimethyl-6-methylaminopyrimidin chloride), a blocker of /h. ZD7288 also caused GCs to hyperpolarize and increase their input resistance, suggesting that /h is active at rest in GCs. The inclusion of cAMP in the intracellular solution shifted the activation of /h to less negative potentials in the MOB, but not in the AOB, suggesting that channels with different subunit composition mediate /h in these regions. Furthermore, we show that mature GCs exhibit /h-dependent subthreshold resonance in the theta frequency range (4–12 Hz). Another inhibitory subtype in the MOB, the periglomerular cells, exhibited /h-dependent subthreshold resonance in the delta range (1–4 Hz), while principal neurons, the mitral cells, do not exhibit /h-dependent subthreshold resonance. Importantly, /h size, as well as the strength and frequency of resonance in GCs, exhibited a postnatal developmental progression, suggesting that this development of /h in GCs may differentially contribute to their integration of sensory input and contribution to oscillatory circuit dynamics.Item REGULATION OF THE INHIBITORY DRIVE IN THE OLFACTORY BULB(2013) Nunez-Parra, Alexia Francisca; Araneda, Ricardo C; Neuroscience and Cognitive Science; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Animals are exposed to a variety of odor cues that serve as environmental guides for their exploratory and social behaviors. Two distinct but complementing pathways process chemosensory cues: the Main and the Accessory olfactory System (AOS). Sensory neurons send their axons to the olfactory bulb (OB), specifically to the main and the accessory olfactory bulb (MOB and AOB, respectively) where they synapse onto principal neurons, the mitral (MCs). The OB is the only relay center between sensory neurons and cortical and limbic structures and therefore important aspects of odor processing occur in this region. Specifically, a distinctive mechanism used for olfactory processing is a strict regulation of MCs output by inhibitory neurons called granule cells (GCs). Importantely, inhibition of MCs is a dynamic process; it is regulated by the constant addition of new GCs to the OB circuit throughout life, in a process known as adult neurogenesis. Little is known, however, about the contribution of adult born neurons to the processing of olfactory cues, known as pheromones. Detection of pheromones by the AOS is critical for proper display of social behaviors such as hierarchical dominance and mate recognition. Here, we studied how the integration of new-born neurons could be regulated. We found that the arrival of new neurons into the adult AOB increases after animals are exposed to aggression and mate cues, suggesting that these newly arrived neurons can add important plasticity to the AOB circuitry and modify olfactory processing under different behavioral contexts. In addition, GCs mediated inhibition in the OB is precisely controlled by an extensive centrifugal innervation. For example, cortical feedback projections and neuromodulatory afferents originating in the midbrain and basal forebrain excite GC, inhibiting MCs' and decreasing their output. Regulation of of GCs by inhibition has also been reported, however, the source of this inhibition and its relevance to olfactory processing is not known. Here we characterized inhibitory inputs onto GCs and show that GCs receive extensive inhibition from GABAergic neurons in the HDB/MCPO and from neighboring GCs. Moreover, we show, for the first time, that inhibition onto GCs is required for proper olfactory discrimination.