Biology

Permanent URI for this communityhttp://hdl.handle.net/1903/11810

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Exploiting sparseness in de novo genome assembly
    (Springer Nature, 2012-04-19) Ye, Chengxi; Sam Ma, Zhanshan; Cannon, Charles H; Pop, Mihai; Yu, Douglas W
    The very large memory requirements for the construction of assembly graphs for de novo genome assembly limit current algorithms to super-computing environments. In this paper, we demonstrate that constructing a sparse assembly graph which stores only a small fraction of the observed k- mers as nodes and the links between these nodes allows the de novo assembly of even moderately-sized genomes (~500 M) on a typical laptop computer. We implement this sparse graph concept in a proof-of-principle software package, SparseAssembler, utilizing a new sparse k- mer graph structure evolved from the de Bruijn graph. We test our SparseAssembler with both simulated and real data, achieving ~90% memory savings and retaining high assembly accuracy, without sacrificing speed in comparison to existing de novo assemblers.
  • Thumbnail Image
    Item
    Automated ensemble assembly and validation of microbial genomes
    (Springer Nature, 2014-05-03) Koren, Sergey; Treangen, Todd J; Hill, Christopher M; Pop, Mihai; Phillippy, Adam M
    The continued democratization of DNA sequencing has sparked a new wave of development of genome assembly and assembly validation methods. As individual research labs, rather than centralized centers, begin to sequence the majority of new genomes, it is important to establish best practices for genome assembly. However, recent evaluations such as GAGE and the Assemblathon have concluded that there is no single best approach to genome assembly. Instead, it is preferable to generate multiple assemblies and validate them to determine which is most useful for the desired analysis; this is a labor-intensive process that is often impossible or unfeasible. To encourage best practices supported by the community, we present iMetAMOS, an automated ensemble assembly pipeline; iMetAMOS encapsulates the process of running, validating, and selecting a single assembly from multiple assemblies. iMetAMOS packages several leading open-source tools into a single binary that automates parameter selection and execution of multiple assemblers, scores the resulting assemblies based on multiple validation metrics, and annotates the assemblies for genes and contaminants. We demonstrate the utility of the ensemble process on 225 previously unassembled Mycobacterium tuberculosis genomes as well as a Rhodobacter sphaeroides benchmark dataset. On these real data, iMetAMOS reliably produces validated assemblies and identifies potential contamination without user intervention. In addition, intelligent parameter selection produces assemblies of R. sphaeroides comparable to or exceeding the quality of those from the GAGE-B evaluation, affecting the relative ranking of some assemblers. Ensemble assembly with iMetAMOS provides users with multiple, validated assemblies for each genome. Although computationally limited to small or mid-sized genomes, this approach is the most effective and reproducible means for generating high-quality assemblies and enables users to select an assembly best tailored to their specific needs.