Biology

Permanent URI for this communityhttp://hdl.handle.net/1903/11810

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Age-dependent gene expression in the inner ear of big brown bats (Eptesicus fuscus)
    (PLoS (Public Library of Science), 2017-10-26) Mao, Beatrice; Moss, Cynthia F.; Wilkinson, Gerald S.
    For echolocating bats, hearing is essential for survival. Specializations for detecting and processing high frequency sounds are apparent throughout their auditory systems. Recent studies on echolocating mammals have reported evidence of parallel evolution in some hearing-related genes in which distantly related groups of echolocating animals (bats and toothed whales), cluster together in gene trees due to apparent amino acid convergence. However, molecular adaptations can occur not only in coding sequences, but also in the regulation of gene expression. The aim of this study was to examine the expression of hearingrelated genes in the inner ear of developing big brown bats, Eptesicus fuscus, during the period in which echolocation vocalizations increase dramatically in frequency. We found that seven genes were significantly upregulated in juveniles relative to adults, and that the expression of four genes through development correlated with estimated age. Compared to available data for mice, it appears that expression of some hearing genes is extended in juvenile bats. These results are consistent with a prolonged growth period required to develop larger cochlea relative to body size, a later maturation of high frequency hearing,mand a greater dependence on high frequency hearing in echolocating bats.
  • Item
    Echolocation, high frequency hearing, and gene expression in the inner ear of bats
    (2017) Mao, Beatrice; Wilkinson, Gerald S; Moss, Cynthia F; Behavior, Ecology, Evolution and Systematics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Bats are the only mammals capable of true flight, and are the second-most speciose mammalian radiation, represented by over 1200 extant species. Key to their evolutionary success was echolocation, which is a complex trait requiring specializations for vocalization, hearing, and echo processing. Because they rely on detecting and analyzing echoes that may return greatly attenuated relative to their outgoing calls, interference from non-target ‘clutter’ echoes poses a challenge for echolocating bats. Here, I demonstrate that the echolocating bat Eptesicus fuscus alters its echolocation behavior to ameliorate the impact of clutter echoes when tracking a moving target, and that the magnitude of its behavioral adjustments depended on the distance and angular offset of two symmetrically placed ‘distracter’ objects. Furthermore, I found that individual bats make different adjustments to their calls, call timing, or head movements, suggesting that multiple strategies for echolocating in clutter may exist. In my second chapter, I examined the expression patterns of hearing-related genes in juvenile bats. Biomedical research establishing the functional roles of hearing genes rarely examines gene expression beyond the early post-natal stage, even though high frequency hearing does not mature until late in development. I show that several key hearing genes implicated in human deafness are upregulated in juvenile bats relative to adults, or exhibit sustained upregulation through the developmental period corresponding to the maturation of echolocation behavior. In my third chapter, I review the evolution of high frequency hearing in mammals, focusing on echolocating bats and whales, which have independently evolved this complex trait. I provide an overview of recent studies that have reported molecular convergence in hearing genes among distantly related echolocators, and assert that the contribution of gene expression to hearing deserves further investigation. Finally, I argue that echolocators provide a unique opportunity to investigate the basis of high frequency amplification, and may possess mechanisms of hearing protection which enable them to prolong the use of echolocation throughout their long lives.