Biology

Permanent URI for this communityhttp://hdl.handle.net/1903/11810

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Plasticity and regeneration of gonads in the annelid Pristina leidyi
    (Springer Nature, 2016-10-04) Özpolat, B. Duygu; Sloane, Emily S.; Zattara, Eduardo E.; Bely, Alexandra E.
    Gonads are specialized gamete-producing structures that, despite their functional importance, are generated by diverse mechanisms across groups of animals and can be among the most plastic organs of the body. Annelids, the segmented worms, are a group in which gonads have been documented to be plastic and to be able to regenerate, but little is known about what factors influence gonad development or how these structures regenerate. In this study, we aimed to identify factors that influence the presence and size of gonads and to investigate gonad regeneration in the small asexually reproducing annelid, Pristina leidyi. We found that gonad presence and size in asexual adult P. leidyi are highly variable across individuals and identified several factors that influence these structures. An extrinsic factor, food availability, and two intrinsic factors, individual age and parental age, strongly influence the presence and size of gonads in P. leidyi. We also found that following head amputation in this species, gonads can develop by morphallactic regeneration in previously non-gonadal segments. We also identified a sexually mature individual from our laboratory culture that demonstrates that, although our laboratory strain reproduces only asexually, it retains the potential to become fully sexual. Our findings demonstrate that gonads in P. leidyi display high phenotypic plasticity and flexibility with respect to their presence, their size, and the segments in which they can form. Considering our findings along with relevant data from other species, we find that, as a group, clitellate annelids can form gonads in at least four different contexts: post-starvation refeeding, fission, morphallactic regeneration, and epimorphic regeneration. This group is thus particularly useful for investigating the mechanisms involved in gonad formation and the evolution of post-embryonic phenotypic plasticity.
  • Item
    Fine taxonomic sampling of nervous systems within Naididae (Annelida: Clitellata) reveals evolutionary lability and revised homologies of annelid neural components
    (BioMed Central, 2015) Zattara, Eduardo E.; Bely, Alexandra E.
    Introduction: An important goal for understanding how animals have evolved is to reconstruct the ancestral features and evolution of the nervous system. Many inferences about nervous system evolution are weak because of sparse taxonomic sampling and deep phylogenetic distances among species compared. Increasing sampling within clades can strengthen inferences by revealing which features are conserved and which are variable within them. Among the Annelida, the segmented worms, the Clitellata are typically considered as having a largely conserved neural architecture, though this view is based on limited sampling. Results: To gain better understanding of nervous system evolution within Clitellata, we used immunohistochemistry and confocal laser scanning microscopy to describe the nervous system architecture of 12 species of the basally branching family Naididae. Although we found considerable similarity in the nervous system architecture of naidids and that of other clitellate groups, our study identified a number of features that are variable within this family, including some that are variable even among relatively closely related species. Variable features include the position of the brain, the number of ciliary sense organs, the presence of septate ventral nerve cord ganglia, the distribution of serotonergic cells in the brain and ventral ganglia, and the number of peripheral segmental nerves. Conclusions: Our analysis of patterns of serotonin immunoreactive perikarya in the central nervous system indicates that segmental units are not structurally homogeneous, and preliminary homology assessments suggest that whole sets of serotonin immunoreactive cells have been gained and lost across the Clitellata. We also found that the relative position of neuroectodermal and mesodermal segmental components is surprisingly evolutionarily labile; in turn, this revealed that scoring segmental nerves by their position relative to segmental ganglia rather than to segmental septa clarifies their homologies across Annelida. We conclude that fine taxonomic sampling in comparative studies aimed at elucidating the evolution of morphological diversity is fundamental for proper assessment of trait variability.