Theses and Dissertations from UMD

Permanent URI for this communityhttp://hdl.handle.net/1903/2

New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a give thesis/dissertation in DRUM

More information is available at Theses and Dissertations at University of Maryland Libraries.

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    THE EFFECTS OF TRAINING HABITS ON CUMULATIVE LOAD AND TIBIAL STRESS FRACTURE INJURY RISK IN RUNNERS
    (2020) Hunter, Jessica G.; Miller, Ross H.; Kinesiology; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Running for exercise is beneficial for preventing chronic diseases, but the incidence and prevalence of running related injuries are high, creating a barrier to participation. Traditional research paradigms attribute high running injury rates to anatomical factors, training habits, and high peak loads resulting from gait mechanics. However, the specific mechanisms of tibial stress fracture injuries, a serious running-related injury, and why females are at such high risk for these injuries, are largely unknown. Runners often train at variable running speeds and durations that can affect the accumulation of potentially injurious loads, but until recently, studies on running injuries have mostly considered training habits and mechanical loads separately. Therefore, the purpose of this dissertation was to identify how training factors of running speed, volume, and duration contribute to the loads accumulated by the body in relation to tibial stress fracture injury risk. Specifically, this dissertation consists of three studies which determine i) the cumulative load of two proportions of running speed over a constant distance and average pace of running, ii) how fatigue-related gait adjustments affect the loads accumulated per-kilometer within a single prolonged run, and if there is a relationship between gait adjustments and physiological or cognitive fatigue outcomes; and iii) if fatigue-related changes in running gait affect the model-predicted cumulative damage and probability of tibial stress fracture. In study 1, a combination of slow and fast speeds led to greater estimated cumulative load compared to running at all normal speed. The greater cumulative load resulted from greater loading during slow running compared to fast running. In study 2, runners maintained gait mechanics and cumulative loads throughout an easy run to fatigue. In study 3, the model-predicted cumulative damage and probability of tibial stress fracture injury were similar between hypothetically maintained gait and measured fatigue-adjusted gait conditions. These results suggest running volume and average pace are not sufficient metrics for tracking cumulative load, and fatigue during running is not likely a major injury risk factor. Further, these results suggest that other training factors or individual factors may play a greater role in injury development than running speed, volume, or fatigue.
  • Thumbnail Image
    Item
    LANDSCAPES AND TRADITIONS OF MARATHONING IN THE USA, 2000-2008
    (2012) Park, Krista Marie; Struna, Nancy L; American Studies; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    This dissertation concludes that the symbiotic relationship between two competing cultural traditions of marathoning, Corrival and Pageant, simultaneous creates and eliminates barriers to marathoning participation. Using John Caughey's strategies for studying cultural traditions and Pierre Bourdieu's concept of capital to differentiate between and describe two different approaches to training for and participating in marathons among runners in the Baltimore-Washington Metropolitan Area (BWMA). Drawing on participant observation, interviews of runners in the BWMA, and an exploration of the geography of running in the BWMA, contextualized by discourse analysis of three prominent marathon training guides and the covers of the two most influential running magazines, this dissertation also explores the strategies individuals' use to overcome actual and potential obstacles to marathon participation, such as parenting or restrictive work schedules.
  • Thumbnail Image
    Item
    Kinetics in Individuals with Unilateral Transtibial Amputations Using Running-Specific Prostheses
    (2012) Baum, Brian Svercauski; Shim, Jae Kun; Kinesiology; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Improvements in rehabilitation and prosthetic design are needed to help promote activities such as running that increase physical activity levels of individuals with lower extremity amputation (ILEA). However, effectively developing these improvements requires a detailed understanding of prosthetic and ILEA running biomechanics. Running-specific prostheses (RSPs) have been developed to improve running performance for ILEA runners, but altered running kinetics may still be necessary to accommodate for the loss of musculoskeletal function caused by lower extremity amputation. The few studies investigating ILEA running with RSPs focus on maximal performance, but our understanding of how ILEA using RSPs modulate kinetics to run at submaximal velocities remains limited. The purpose of this study was to characterize changes in kinetics and mechanical energy across a range of running velocities in ILEA wearing RSPs. This dissertation investigated six specific aims through six corresponding experiments that improve our knowledge of mechanical and anthropometric properties of RSPs and the kinetic profiles of ILEA running at submaximal velocities. Four common RSP designs were tested for mechanical and anthropometric properties. ILEA with unilateral transtibial amputations who wear RSPs and an able-bodied control group participated in the running experiments. Mechanical and anthropometric results indicated that RSP marker placement had little effect on joint kinetic estimations proximal to the prostheses, and trifilar pendulums can measure moments of inertia with <1% error. The running experiments provided the first 3D kinetic descriptions of ILEA running. The prosthetic limb typically generated lower peak kinetic parameters and 50% lower total mechanical work than the intact and control limbs, indicating a greater reliance on the intact limb. To counter the prosthetic limb deficiencies, ILEA increased stride frequencies compared to control subjects. Additionally, the prosthetic limb demonstrated prolonged periods of anterior ground reaction force to increase propulsive impulse and prolonged hip stance phase extension moments that generated increased hip concentric work. The data indicated that ILEA wearing RSPs run differently than able-bodied runners and use several adaptive mechanisms to run at the same velocity and to increase running velocity. These mechanisms are discussed and future directions of research are suggested.