Theses and Dissertations from UMD
Permanent URI for this communityhttp://hdl.handle.net/1903/2
New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a give thesis/dissertation in DRUM
More information is available at Theses and Dissertations at University of Maryland Libraries.
Browse
11 results
Search Results
Item The Politics of Insurgency(2015) Gandy, Maegen; Quester, George; Government and Politics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)This dissertation introduces a new definition of insurgency for academic discourse. It argues that four components of a defined relationship framework must interoperate to satisfy organizational requirements and processes in order for an insurgency to achieve increasing levels of scale. From a systemic perspective, it presents a connective theory of constitutive and destructive mechanisms to assess why certain movements expand or ignite while others degrade or get stuck in a particular phase. The proposed perspective provides improved analytic leverage over existing phasing models. Chapter 1 introduces the scope and definition of the politics of insurgency. Chapter 2 presents academic, military, and legal perspectives of the phenomenon. Chapters 3 and 4 explain the limitations of existing insurgency models within the context of two historic case studies, the Chinese and Algerian Revolutions. Chapter 5 introduces the dissertation’s full phasing model. Chapters 6 and 7 present case studies to further elucidate the proposed relationship framework and composite phasing construct, assessing strengths and weaknesses in light of two comparable cases. The Chechen and Kosovar Albanian insurgencies provide insight and applied examples of the activities that occur within each phase. Chapter 8 then consolidates the findings and analysis from the case studies and assesses the viability of the phasing model as a usable tool to better comprehend insurgency behavior, movement scalability, and associated response options.Item Model Development for Gadolinia-doped Ceria-based Anodes in Solid Oxide Fuel Cells(2014) Wang, Lei; Jackson, Greg S; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Intermediate temperature (500 &ndash 700 °C) solid oxide fuel cells (IT&ndashSOFCs) with gadolinia&ndashdoped ceria (GDC) electrolytes have significant commercial potential due to reduced materials costs for seals and interconnect and improved performance with high oxide&ndashion conductivity at these temperatures. As an SOFC anode component in the reducing anode environments, GDC offers enhanced catalytic activity and tends to suppress carbon deposition in composite Ni/GDC anodes. The current study investigates relevant kinetics on GDC anodes for IT&ndashSOFC applications. Simultaneous electrochemical characterization and X&ndashray photoelectron spectroscopy of thin&ndashfilm Ni/GDC and Au/GDC electrochemical cells provide a basis for understanding pathways for H2 and CO electrochemical oxidation as well as H2O splitting on GDC and GDC composite electrodes. Differences in electrochemical performance of Ni/GDC and Au/GDC electrodes at temperatures below 650 °C reveal limitations of GDC surfaces in promoting electrooxidation under conditions of low polaron (electron) mobility. These results also suggest the role of the metal in promoting hydrogen spillover to facilitate change transfer reactions at the Ni/GDC interface. Variation in OH- concentration at the metal/GDC interface with operating temperature, effective oxygen partial pressure, and electric bias provides valuable insight into the nature of electrochemical and other heterogeneous reactions in IT&ndashSOFC anodes. A detailed kinetic model for the GDC surface reactions and Ni/GDC charge&ndashtransfer reactions of H2 oxidation and H2O electrolysis is developed based on electrochemical characterization and spectroscopic analysis of GDC surface electrochemistry. The thermodynamically consistent kinetic model is able to capture the observed chemical and electrochemical processes on the thin&ndashfilm Ni/GDC electrode. A full three&ndashdimensional IT&ndashSOFC stack model is developed with simplified kinetics to evaluate GDC&ndashbased anode performance with H2 and methane&ndashderived fuels. The stack model explores the effects of operating condition on performance of stacks with GDC electrolytes and Ni/GDC anodes. The parametric study results of stack model provide essential information for optimizing performance of IT&ndashSOFCs stack and guiding IT&ndashSOFC design. Temperature distribution in non&ndashisothermal model result suggests that internal CH4 reforming can be used as an effective thermal management strategy to maintain high current densities and cell voltages and to lower risk to thermo&ndashmechanical degradation.Item UNDERSTANDING DIRECT BOROHYDRIDE - HYDROGEN PEROXIDE FUEL CELL PERFORMANCE(2013) Stroman, Richard O'Neil; Jackson, Gregory S; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Direct borohydride fuel cells (DBFCs) generate electrical power by oxidizing aqueous BH4- at the anode and reducing an oxidizer, like aqueous H2O2 for an all-liquid fuel cell, at the cathode. Interest in DBFCs has grown due to high theoretical energy densities of the reactants, yet DBFC technology faces challenges such as side reactions and other processes that reduce cell efficiency and power generation. Relationships linking performance to cell design and operation will benefit from detailed and calibrated cell design models, and this study presents the development and calibration of a 2D, single-cell DBFC model that includes transport in reactant channels and complex charge transfer reactions at each electrode. Initial modeling was performed assuming ideal reactions without undesirable side reactions. Results were valuable for showing how design parameters impact ideal performance limits and DBFC cell voltage (efficiency). Model results showed that concentration boundary layers in the reactant flow channels limit power density and single-pass reactant utilization. Shallower channels and recirculation improve utilization, but at the expense of lower cell voltage and power per unit membrane area. Reactant coulombic efficiency grows with decreasing inlet reactant concentration, reactant flow rate and cell potential, as the relative reaction rates at each electrode shift to favor charge transfer reactions. To incorporate more realistic reaction mechanisms into the model, experiments in a single cell DBFC were performed to guide reaction mechanism selection by showing which processes were important to capture. Kinetic parameters for both electrochemical and critical heterogeneous reactions at each electrode were subsequently fitted to the measurements. Single-cell experiments showed that undesirable side reactions identified by gas production were reduced with lower reactant concentration and higher supporting electrolyte concentration and these results provided the basis for calibrating multi-step kinetic mechanism. Model results with the resulting calibrated mechanism showed that cell thermodynamic efficiency falls with cell voltage while coulombic utilization rises, yielding a maximum overall efficiency operating point. For this DBFC, maximum overall efficiency coincides with maximum power density, suggesting the existence of preferred operating point for a given geometry and operating conditions.Item Rotorcraft Brownout Mitigation Through Flight path Optimization Using a High Fidelity Rotorcraft Simulation Model(2012) Alfred, Jillian; Celi, Roberto; Aerospace Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Brownout conditions often occur during approach, landing, and take off in a desert environment and involve the entrainment and mobilization of loose sediment and dust into the rotor flow field. For this research, a high fidelity flight dynamics model is used to perform a study on brownout mitigation through operational means of flight path. In order for the high fidelity simulation to model an approach profile, a method for following specific profiles was developed. An optimization study was then performed using this flight dynamics model in a comprehensive brownout simulation. The optimization found a local shallow optimum approach and a global steep optimum approach minimized the intensity of the resulting brownout clouds. These results were consistent previous mitigation studies and operational methods. The results also demonstrated that the addition of a full rotorcraft model into the brownout simulation changed the characteristics of the velocity flow field, and hence changing the character of the brownout cloud that was produced.Item Agent-Based Models of Highway Investment Processes: Forecasting Future Networks under Public and Private Ownership Regimes(2012) Yusufzyanova, Dilya; Zhang, Lei; Civil Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)The present highway funding system, especially fuel taxes, may become a less reliable revenue source in the future, while the transportation public agencies do not have sufficient financial resources needed to meet the increasing traffic demand. In the last two decades there has been increasing interest in utilizing private sector to develop, finance and operate new and existing roadways in the United States. While transportation privatization projects have shown signs of success, it is not always clear how to measure the true benefits associated with these projects for all stakeholders, including the public sector, the private sector and the public. "Win-win" privatization agreements are tricky to make due to conflicting nature of the various stakeholders involved. Therefore, there is a huge need to study the welfare impacts of various road privatization arrangements for the society as a whole, and the financial implications for private investors and public road authorities. In order to address these needs, first, an empirical analysis is performed to study the investment decision processes of public transportation agencies. Second, the agent-based decision-making model is developed to consider transportation investment processes at different levels of government which forecasts future transportation networks and their performance under both existing and alternative transportation planning processes. Third, various highway privatization schemes currently practiced in the U.S. are identified and an agent-based model for analyzing regulatory policies on private-sector transportation investments is developed. Fourth, the above mentioned models are demonstrated on the networks with grid and beltway topologies to study the impacts of topology configuration on the privatization arrangements. Based on the simulation results of developed models, a number of insights are provided about impacts of ownership structures on the socio-economic performance in transportation systems and transportation network changes over time. The proposed models and the approach can be used in long-run prediction of economic performance intended for describing a general methodology for transportation planning on large networks. Therefore, this research is expected to contribute significantly to the understanding and selecting proper road privatization programs on public networks.Item MODELING POTENTIAL HABITAT OF CHESAPEAKE BAY LIVING RESOURCES(2012) Schlenger, Adam James; North, Elizabeth; Marine-Estuarine-Environmental Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)A quantitative understanding is needed to identify the impacts of climate change and eutrophication on the habitat of living resources so that effective management can be applied. A systematic literature review was conducted to obtain the physiological tolerances to temperature, salinity, and dissolved oxygen for a suite of Chesapeake Bay species. Information obtained was used to define required and optimal habitat conditions for use in a habitat volume model. Quality matrices were developed in order to quantify the level of confidence for each parameter. Simulations from a coupled oxygen and hydrodynamic model of the Chesapeake Bay were used to estimate habitat volumes of juvenile sturgeon (Acipenser oxyrinchus) and to assess sensitivity of habitat to environmental factors. Temperature and salinity define spring and fall habitat and a combination of salinity, temperature and dissolved oxygen influence habitat in summer. Both fixed criteria and bioenergetics habitat volume models yielded similar results.Item Downscaled Climate Change Forecasting and Maryland's Forests(2011) Juchs, Stephanie; McIntosh, Marla S; Marine-Estuarine-Environmental Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Effective planning and management of forests in a changing climate requires valid and robust predictions of future climate change that are context-specific since climate changes vary by region. Climate models are often used to predict future trends in temperature and precipitation at the global level, but are most useful if downscaled to predict change at regional levels. Monthly temperature and precipitation were predicted using three downscaled regional climate models for the 1990s and the 2050s. Comparison of the 1990's predictions to weather station data from across Maryland indicated inherent model biases affecting accurate predictions, which were used to adjust the model-projected climate variables for the 2050s. The projected daily temperatures were also used to calculate projected growing degree days and frost days. The degree of climate change in Maryland projected by these regional models for the next half-century would have profound impacts on forests across Maryland.Item A Probabilistic-Mechanistic Approach to Modeling Stress Corrosion Cracking Propagation in Alloy 600 Components with Applications(2011) Wu, Gary; Modarres, Mohammad; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Stress corrosion cracking (SCC) is a major degradation mechanism of Alloy 600 steam generator (SG) tubes composed of three main stages: crack incubation, crack initiation and crack propagation. Since SG tubes act as a barrier between the radioactive material and the atmosphere, SCC becomes a critical failure mechanism that jeopardizes safety and integrity. As such, this research proposes a probabilistic-mechanistic approach focused on modeling SCC propagation of Alloy 600 SG tubes with uncertainty. The approach is presented in two parts; the first is an empirical model and the second is a simulation process. To provide a background, this research provides an overview of SCC fundamentals, nuclear power generation and SGs, as well as specifics regarding SG tube degradation. Simulation of SCC on Alloy 600 SG tubes in primary water provided logical results. Future work in this research is also discussed at the end of this paper.Item LEAD-FREE ELECTRONICS USE AND REPAIR DYNAMIC SIMULATION(2009) Chaloupka, Andrew Charles; Sandborn, Peter A; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)The conversion from tin-lead to lead-free electronics has increased concern amongst engineers about the reliability of electronic assemblies. In order to communicate the impact of the conversion in terms of cost and availability, a simulation of electronic systems at the LRU level to and through a repair facility was created. The model includes the effects of repair prioritization, multiple possible failure mechanisms, no-fault-founds, and un-repairable units. Example analyses were performed on electronic assemblies that use SAC and SnPb solder using a repair process modeled after a NSWC Crane Aviation Repair Process. The case studies revealed that LRUs exposed to usage profiles characteristic of aerospace and high performance applications, high thermal cycling temperatures with short dwell times, SAC exhibited significantly increased repair costs when compared to tin-lead. Prioritizing LRUs and increasing the rate of deployment had no significant impact on the cost or availability metrics for the cases considered.Item Modeling The Impact Of Sediment Resuspension And Flocculation On The Fate Of Polychlorinated Biphenyls(2008-07-11) Chang, Chihwei Andrew; Baker, Joel E; Marine-Estuarine-Environmental Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Hydrophobic organic contaminants (HOCs) are important pollutants in urban estuaries. HOCs include polycyclic aromatic hydrocarbon (PAH), polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs). Sorption to resuspended particles and sediments plays an important role controlling the water column residence times and spatial distributions of HOC in aquatic environments. Pollutant residence times and the time required to reach sorptive equilibrium are highly dependent on the chemical character, the surrounding environment, and particle types and compositions. If rates of sorption are slow relative to particle residence times, HOC behavior may be described using kinetically-limited partitioning behavior. In this study, a flocculation model that simulates flocculation of activated carbon, organic carbon, and inorganic solids ranging in diameter from 2 to 1000 μm has been developed. A multi-class flocculation-based contaminant fate model is adapted to describe desorption kinetics for contaminants associated with flocculated particles during a resuspension event. The model is effective in predicting transport of hydrophobic organic contaminants among different size flocs, water, and two sediment layers. The model also demonstrates the impact of fractal geometry, bottom shear stress, particle composition, floc size, fraction of organic carbon (fOC), fraction of activated carbon (fAC), organic carbon partition coefficient (KOC), and total suspended solids (TSS) on contaminant desorption rate and residence time. Under different scenarios, this model's results support the importance of multi-floc cluster, sediment-water interaction, and of flocculation for the contaminant desorption rate in the water column. In a floc-rich environment flocculation is an important mechanism redistributing contaminants among flocs. When flocculation is considered in a dynamic particle environment that includes sediment resuspension, settling, and kinetic-limited HOC partitioning, the steady state total PCB concentration in the water column is decreased by 20 % and water column HOC residence time decreased by 36%. When activated carbon is added to contaminated sediments, the total PCB concentration in the water column decreases by 90% (123.4 to 11.4 ng/L). If the activated carbon coagulates with the resuspended sediment, this decrease is partially offset by some activated carbon being entrained in slowly-settling flocs, and the steady-state PCB concentration is 61 ng/L.