Theses and Dissertations from UMD
Permanent URI for this communityhttp://hdl.handle.net/1903/2
New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a give thesis/dissertation in DRUM
More information is available at Theses and Dissertations at University of Maryland Libraries.
Browse
2 results
Search Results
Item A WIDE SCALE INVESTIGATION INTO LNCRNA IN BOS TAURUS(2023) Marceau, Alexis; Ma, Li; Animal Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Although the history of genetic research has focused on genes and gene products, there is an interesting emerging subclass of genetic elements: long noncoding RNAs (lncRNAs). These are portions of the genome that are longer than 200 base pairs in length and are transcribed from DNA to RNA but do not yield a protein. The function of lncRNA is wide reaching and difficult to define; however, they are predominantly linked to the regulation of gene expression. This is done via transcriptional control, translation control, pre- and post- transcriptional and translational control, epigenetic modifications, RNA processing,as well as other methods. In this dissertation, multiple Bos taurus tissues across various life conditions were investigated in order to identify lncRNA and to begin making predictions about the role and function of identified transcripts. First, lncRNA were identified and analyzed in Bos taurus rumen tissue in pre-weaning and post-weaning cattle. lncRNA were implicated in the weaning process and demonstrated enrichment in complex traits, indicating the continued impact rumen-associated lncRNA have on dairy cattle. Following this study, mammary tissues from dry and lactating cattle were used for lncRNA analysis, in relation to the lacta-tion processes. This study revealed both the presence and impact of mammary lncRNA, and identified lncRNA associated with genes and biological processes that are strongly linked to lactation and mammary tissue function. Subsequently, immune system related tissues were analyzed for lncRNA and their roles. This investigation demonstrated lncRNA to be present in all investigated tissues, including transcripts being repeatedly present. Further analysis into identified lncRNA associated transcripts with genes and functions that are crucial to immune response. Finally, a tutorial was created to make lncRNA identification research more easily accessible to future researchers. The findings and creations of this dissertation increase the knowledge base of lncRNA and their role, allowing for further research endeavors and improvements in Bos taurus husbandry.Item Novel Models for Studying Trophoblast Development and Placental Pathologies(2019) Pence, Laramie; Telugu, Bhanu; Molecular and Cell Biology; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Placental development begins in the mammalian blastocyst, when the first lineage specification event commits one cell population to making extraembryonic tissues, including the placenta, and commits another cell population to making the embryo proper. The mouse is an excellent animal model to study these early events and how the resulting placenta organ supports normal fetal development and a healthy pregnancy in the mother. The studies included in this Dissertation use the mouse to understand the role of long non-coding RNAs during early placental development, and to create a lineage biasing model that takes advantage of what is known about the first lineage specification event in mammals. Using expression analysis and the CRISPR/Cas9 system to create a knockout mouse strain, a placental-specific lncRNA was discovered and shown to be expressed in derivatives of the ectoplacental cone. Additionally, using the line age bias model to cause biased ablation of Hif1α in the placenta has revealed a role for fetal vs. placental contribution of resulting phenotypes.